Indian Institute of Technology Kanpur Proposal for a New Course

- 1. Course No: CHE6XX (proposed)
- 2. Course Title: Stability Theory for Chemical Engineers
- 3. Per Week Lectures: <u>3</u> (L), Tutorial: <u>0</u> (T), Laboratory: <u>0</u> (P), Additional Hours[0-2]: <u>0</u> (A),

Credits (3-0-0-0): $\underline{9}$

Duration of Course: **One Semester**

4. Proposing Department: Department of Chemical Engineering

Other Departments/IDPs which may be interested in the proposed course: NA

Other faculty members interested in teaching the proposed course: Dr. Naveen Tiwari, Dr. V. Shankar

- 5. Proposing Instructor(s): Dr. Dipin S. Pillai
- 6. Course Description:
 - A. Objectives:

The objective of this course is to familiarize students with the applications of nonlinear dynamics and stability theory in various aspects of core chemical engineering.

B. Contents (preferably in the form of 5 to 10 broad titles):Lecture-wise break-up (considering the duration of each lecture is 50 minutes)

S .	Broad Title	Topics	No.	of
No.			Lectu	\mathbf{res}
1.	Introduction	Introduction to nonlinear dynamics and stabil-	1	
		ity theory		
2.	1D Systems	Lumped Parameter Systems: ODEs, Flows on	4	
		a line, Bifurcations: Saddle-node, transcritical,		
		pitchfork		
3.	2D Systems	Fixed points, phase plane, eigenvalues, eigenvec-	5	
		tors, conservative systems, Lotka-Volterra type		
		models, conservative systems		
4.	Limit Cycles	Hopf bifurcation, index theory, existence of	6	
		closed orbits, Poincaré–Benedixson theorem,		
		van der Pol oscillator, method of multiple time		
		scales		
8.	Non-isothermal reactors	Multiplicity, stability, steady states and limit cy-	4	
		cles in non-isothermal CSTRs with and without		
		Frank-Kamenetskii approximation		
5.	Homotopy Continuation,	Bifurcation diagrams using the method of ho-	3	
	MATCONT 7.4	motopy continuation, Brief introduction session		
		to MATCONT 7.4		
6.	Multi-component Distillation	Residue curve maps, stationary points: stability	5	
		of pure component and azeotropic compositions,		
		distillation boundary, bifurcations under finite		
		reflux		

7.	Oscillating Reactions	Beluosov–Zhabotinsky reaction, Oregonator	3
		model and its limit cycles	
9.	Distributed Parameter Sys-	PDEs as governing equations, introduction to	5
	tems	modal analysis, dispersion relations, classifica-	
		tion of linear instability of a spatially uniform	
		state: Type I-III, multiplicity and stability of	
		PFRs	
9.	Reaction-Diffusion Systems	Turing patterns, Spatiotemporal oscillations of	4
		chemical oscillators	
Total			

- C. Recommended pre-requisites, if any: CHE212, CHE213, CHE331
- D. Short summary for including in the Courses of Study Booklet:

Introduction to stability theory, lumped parameter systems with ODEs, saddle-node, transcritical, pitchfork bifurcations, 2D Systems - fixed points, phase plane, eigenvalues, eigenvectors, conservative systems, Lotka-Volterra, limit cycles, non-isothermal CSTR, multi-component distillation, residue curve maps, distillation boundary, oscillating reactions, distributed parameter systems with PDEs, modal analysis, dispersion relations, Turing patterns, stability of PFR, spatiotemporal chemical oscillations

- 7. Recommended text/reference books:
 - Strogatz SH. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC press; 2018.
 - Perlmutter DD. Stability of Chemical Reactors. Prentice-Hall; 1972.
 - Doherty MF, and Malone MF. Conceptual Design of Distillation Systems. McGraw-Hill, 2001.
 - Cross M, Greenside H. Pattern formation and dynamics in nonequilibrium systems. Cambridge University Press; 2009.
 - Epstein IR, Pojman JA. An introduction to nonlinear chemical dynamics: oscillations, waves, patterns, and chaos. Oxford university press; 1998.
- 8. Any other remarks:
 - Computational take-home assignments will be provided to supplement the theoretical aspects.

Dated: 09/03/24

Proposer: Dr. Dipin S. Pillai

Dated:

DPGC Convener:

The course is approved / not approved

Chairman, SPGC

Dated: