Indian Institute of Technology Kanpur Proposal for a New Course

- 1. Course No: CHE 6XX
- 2. Course Title: Microhydrodynamics and Suspensions
- 3. Per Week Lectures: <u>3</u> (L), Tutorial: <u>0</u> (T), Laboratory: <u>0</u> (P), Additional Hours[0-2]: <u>0</u> (A), Credits (3-0-0-0)
 Duration of Course: Full semester
- 4. Proposing Department: Department of Chemical Engineering

Other Departments/IDPs which may be interested in the proposed course: ME, MSE, SEE

Other faculty members interested in teaching the proposed course: H. H. Katkar, Dipin S. Pillai

- 5. Proposing Instructor(s): Indranil Saha Dalal
- 6. Course Description:

A)Objectives: This course aims to introduce microhydrodynamics leading to macroscopic phenomena in suspension dynamics. The concepts are expected to be useful for dynamics in a variety of systems relevant to chemical engineers, including suspensions, polymer solutions and even biological systems like blood, which is a essentially a suspension of RBCs. The course is aimed primarily towards PG students and would consist of computerbased exercises and term projects as well.

B) Contents (preferably in the form of 5 to 10 broad titles):

Lecture-wise break-up (considering the duration of each lecture is 50 minutes)

S. No.	Broad Title	Topics	No. of Lectures
1.	Viscous flows	Equations of fluid dynamics, buoyancy and drag, properties of Stokes flow – linearity, reversibility and instantaneity	4
2.	Single sphere in Stokes flow	Single sphere flows – rotation, translation, straining, hydrodynamic force, torque, stresslet, Faxén laws	5
3.	Solution techniques	Point force solution, point torque and stresslet, integral representation, multipole representation, resistance matrices, slender body theory, boundary integral method	6
4.	Pair interactions	Sedimenting pair, pair in shear, pair lubrication interactions, Stokesian dynamics	5
5.	Stochastic concepts	Probability distributions, ensemble average, Random walks and diffusion, Brownian motion, Stokes-Einstein relation and Smoluchowski equation, Langevin equation	5
6.	Sedimentation	Settling of a suspension of spheres, influence of walls, velocity fluctuations and hydrodynamic diffusion	4
7.	Shear flow	Suspension viscosity, non-Newtonian rheology in suspensions, microstructure of sheared suspensions, constitutive modelling of suspension stress, shear-induced diffusion,	h

C) Recommended pre-requisites, if any: PG level transport phenomena course or equivalent

- D)Short summary for including in the Courses of Study Booklet: Stokes flow, Resistance matrices, Pair interactions, Sedimentation, Suspension viscosity, Shear-induced diffusion and migration
- 7. Recommended text/reference books:
 - 1. Élisabeth Guazzelli and Jeffrey F. Morris, A physical introduction to Suspension Dynamics, Cambridge University Press (2012).
 - 2. S. Kim and S. J. Karrila, Microhydrodynamics: Principles and selected applications, Dover publications (2005).
- 8. Any other remarks: Home assignments and quiz/exams may also consist of computer-based exercises (preferably with Python/Matlab).

Dated:12/2/2025

Proposer: Indranil Saha Dalal

Dated:

DPGC Convener:

The course is approved / not approved

Chairman, SPGC

Dated: