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Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.
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Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.
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Declaration

Let T be a type then we can declare a pointer to T as T *ptr

Example

int x, *p, **pp;

The above code declares

I x is an integer

I p is a pointer to an integer

I pp is a pointer to a pointer to an integer.
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Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥
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Swapping: Pointer version

void swap(int *, int *);

int main()

{

int x=15,y=42;

printf("x = %d, y = %d\n",x,y);

swap(&x,&y);

printf("x = %d, y = %d\n",x,y);

}

void swap(int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}



Swapping Pointer version
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