
Fundamentals of Computing: Lecture 14

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

August 31, 2009

Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.

·

ptr

5

x

Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.

Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.

·

ptr

5

x

Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.

Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.

·

ptr

5

x

Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.

Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.

·

ptr

5

x

Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.

Pointers

I A pointer is an abstraction of memory address.

I Value of a pointer variable of type T is an address of a
memory cell capable of storing a value of type T.

·

ptr

5

x

Before we start:

WARNING
Too much of pointer gymnastics can cause serious injury to
readability.

Declaration

Let T be a type then we can declare a pointer to T as T *ptr

Example

int x, *p, **pp;

The above code declares

I x is an integer

I p is a pointer to an integer

I pp is a pointer to a pointer to an integer.

Declaration

Let T be a type then we can declare a pointer to T as T *ptr

Example

int x, *p, **pp;

The above code declares

I x is an integer

I p is a pointer to an integer

I pp is a pointer to a pointer to an integer.

Declaration

Let T be a type then we can declare a pointer to T as T *ptr

Example

int x, *p, **pp;

The above code declares

I x is an integer

I p is a pointer to an integer

I pp is a pointer to a pointer to an integer.

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p
⊥

x

5

x

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p
⊥

x

5

x

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p
⊥

x

5

x

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p
⊥

x

5

x

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p
⊥

x

5

x

Dereferencing

For a pointer variable ptr, *ptr is the value stored in the location
pointed by ptr.

Conversely

If x is a variable then &x is the address of the variable.

int x, *p, *pp;

x =5;

p = &x;

pp = &p;

⊥

·

pp

·

p

⊥

x

5

x

Swapping: Pointer version

void swap(int *, int *);

int main()

{

int x=15,y=42;

printf("x = %d, y = %d\n",x,y);

swap(&x,&y);

printf("x = %d, y = %d\n",x,y);

}

void swap(int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a

15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

Swapping Pointer version

15

x

42

y

·
a

⊥

temp

·
b

temp = *a
15

temp

*a = *b

42

x

*b=temp

15

y

