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Dynamic memory allocation

1. Allocating memory as required.

2. Making programs more flexible, array bounds that are runtime
dependent.



Arbitrary sized array

#include <stdio.h>
#include <stdlib.h>

int main()

{

int *a, int n;
printf("enter the size of the list: ");
scanf ("%d",&n) ;
a = (int *) malloc(n * sizeof(int))
if ( a == NULL)
{
printf("too bad not enough memory") ;
return 1;
}
/* a is now a variable sized array */
sort(a,n);



General idiom for variable size arrays

T *a;
a = (T *) malloc( n * sizeof(T))
if ( a == NULL)
{
/* not enough memory */
}
/* use a */
free(a);
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General idiom for variable size arrays

T *a;
a = (T *) malloc( n * sizeof(T))
if ( == NULL)
{
/* not enough memory */
}
/* use a */
free(a);

» The function malloc allocates the required amount of space,

» malloc returns the pointer to the allocated memory if
possible or NULL otherwise,

» The expression sizeof(T) gives the “size” of the type T,
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The sizeof operator

» sizeof (T) is the memory required to store a value of type T.
> sizeof (a) where a is of type T is same as size of sizeof (T),

» The value of sizeof operation is of type size_t.



#include<stdio.h>

int main()

{
int a[100];
int *ptr;
int b;
int c[] = {100,200,3,4,5,6%};
printf ("sizes of:\n");
printf("\t a is  %lud\n",sizeof(a));
printf("\t b is  %lud\n",sizeof(b));
printf("\t c is  %lud\n",sizeof(c));
printf ("\t ptr is %lud\n", sizeof(ptr));
return O;



The sizeof of an array

The size of an array of type T and length n is n times the size of T



The sizeof of an array

The size of an array of type T and length n is n times the size of T

Idiom to find the lenght

int a[] = {100,200,3,4,5,6}
int len = sizeof(a)/sizeof(al0]);
int len = sizeof(a)/sizeof(int);
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What is the type of the function malloc?

void #*malloc(size_t size);

Pointer to void

» Any pointer can be cast to a void pointer. eg.
int *ptr;
void *p;
p = (void *) ptr;

> If p is a void pointer which was assigned a pointer to T then

p can be cast back to T.
» A void pointer cannot be dereferenced

» No pointer arithmetic is allowed on void pointer.
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does not care of the pointer type that it is manipulating.
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