Fundamentals of Computing: Lecture 22

Piyush P Kurur
Office no: 224
Dept. of Comp. Sci. and Engg.
T Kanpur

September 18, 2009

Dynamic memory allocation

1. Allocating memory as required.

2. Making programs more flexible, array bounds that are runtime
dependent.

Arbitrary sized array

#include <stdio.h>
#include <stdlib.h>

int main()

{

int *a, int n;
printf("enter the size of the list: ");
scanf ("%d",&n) ;
a = (int *) malloc(n * sizeof(int))
if (a == NULL)
{
printf("too bad not enough memory") ;
return 1;
}
/* a is now a variable sized array */
sort(a,n);

General idiom for variable size arrays

T *a;
a = (T *) malloc(n * sizeof(T))
if (a == NULL)
{
/* not enough memory */
}
/* use a */
free(a);

General idiom for variable size arrays

T *a;
a = (T *) malloc(n * sizeof(T))
if(== NULL)
{
/* not enough memory */
}
/* use a */
free(a);

» The function malloc allocates the required amount of space,

General idiom for variable size arrays

T *a;
a = (T *) malloc(n * sizeof(T))
if (== NULL)
{
/* not enough memory */
}
/* use a */
free(a);

» The function malloc allocates the required amount of space,

» malloc returns the pointer to the allocated memory if
possible or NULL otherwise,

General idiom for variable size arrays

T *a;
a = (T *) malloc(n * sizeof(T))
if (== NULL)
{
/* not enough memory */
}
/* use a */
free(a);

» The function malloc allocates the required amount of space,

» malloc returns the pointer to the allocated memory if
possible or NULL otherwise,

» The expression sizeof(T) gives the “size” of the type T,

The sizeof operator

» sizeof (T) is the memory required to store a value of type T.

The sizeof operator

» sizeof (T) is the memory required to store a value of type T.

> sizeof (a) where a is of type T is same as size of sizeof (T),

The sizeof operator

» sizeof (T) is the memory required to store a value of type T.
> sizeof (a) where a is of type T is same as size of sizeof (T),

» The value of sizeof operation is of type size_t.

#include<stdio.h>

int main()

{
int a[100];
int *ptr;
int b;
int c[] = {100,200,3,4,5,6%};
printf ("sizes of:\n");
printf("\t a is %lud\n",sizeof(a));
printf("\t b is %lud\n",sizeof(b));
printf("\t c is %lud\n",sizeof(c));
printf ("\t ptr is %lud\n", sizeof(ptr));
return O;

The sizeof of an array

The size of an array of type T and length n is n times the size of T

The sizeof of an array

The size of an array of type T and length n is n times the size of T

Idiom to find the lenght

int a[] = {100,200,3,4,5,6}
int len = sizeof(a)/sizeof(al0]);
int len = sizeof(a)/sizeof(int);

What is the type of the function malloc?

What is the type of the function malloc?

void *malloc(size_t size);

What is the type of the function malloc?

void *malloc(size_t size);

Pointer to void

» Any pointer can be cast to a void pointer. eg.
int *ptr;
void *p;
p = (void *) ptr;

What is the type of the function malloc?

void #*malloc(size_t size);

Pointer to void

» Any pointer can be cast to a void pointer. eg.
int *ptr;
void *p;
p = (void *) ptr;
> If p is a void pointer which was assigned a pointer to T then
p can be cast back to T.

What is the type of the function malloc?

void #*malloc(size_t size);

Pointer to void

» Any pointer can be cast to a void pointer. eg.
int *ptr;
void *p;
p = (void *) ptr;

> If p is a void pointer which was assigned a pointer to T then
p can be cast back to T.

» A void pointer cannot be dereferenced

What is the type of the function malloc?

void #*malloc(size_t size);

Pointer to void

» Any pointer can be cast to a void pointer. eg.
int *ptr;
void *p;
p = (void *) ptr;

> If p is a void pointer which was assigned a pointer to T then

p can be cast back to T.
» A void pointer cannot be dereferenced

» No pointer arithmetic is allowed on void pointer.

Why void pointers?

Why void pointers?

1. Often one wants generic functions like malloc that really
does not care of the pointer type that it is manipulating.

Why void pointers?

1. Often one wants generic functions like malloc that really
does not care of the pointer type that it is manipulating.

2. The hardware may not support arbitrary conversion due to
alignment restriction.

Why void pointers?

1. Often one wants generic functions like malloc that really
does not care of the pointer type that it is manipulating.

2. The hardware may not support arbitrary conversion due to
alignment restriction.

