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Summary of last class

> A structure is a way of constructing product types.

struct structure-name{
field declarations
};

» If foo is of type strunct Foo and bar is a field of the
structure Foo then the bar field of foo can be accessed via
the expression foo.bar

» Fields are both |-values as well as r-values.

» Structures are passed as values to function which is unlike

Java.
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Examples

struct Vector2D {
double x;
double y;

};

typedef struct{
double x;
double y;

} Vector2D;

struct Vector2D{
double x;
double y;

} origin = {0,0};
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Structures are not passed as reference to functions.

#line 214 "lecture23.lhs"
#include <stdio.h>
void printVector(struct Vector2D);
void shiftByOneUnit(struct Vector2D u);
int main () {
printf ("Before shift: ");printVector(origin);
shiftByOneUnit (origin);
printf ("After shift: ");printVector(origin);
}
void shiftByOneUnit(struct Vector2D u){
u.x = u.x + 1;
}
void printVector(struct Vector2D u){
printf (" (4f,%f)\n" ,u.x,u.y);
}
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Recursive data types

> List. A list is either an empty list or an element followed by a
list.

» Binary trees. A binary tree is either an empty Tree or a root
node with two children left subtree and right subtree.

» General trees (some times called Rose trees). Either an empty
tree or a node with a Forest of subtrees.

Mathematically

L(a) = L+axlL(a)

BT(a) = L+axBT(a)xBT(a)
T(a) = L+axF(a)
Fla) = L(T(a))



In Haskell this would be

data List a = Empty | Cons a (List a)
data BinTree a = Empty | Node (BinTree a) a (BinTree a)
data Tree a = Empty | Node a [Tree al
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How does one simulate this in C?

An ugly dance involving structs and pointers.

typedef struct Node Node;
struct Node {

int datum;

Node * next;

};

typedef Node *List;
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The head and tail function

data List a = Empty | Cons a (List a)
head (Cons x _) = x
tail (Cons _ xs) = xs

int head(List 1)

{
if( 1 == NULL) {error("head of an empty list");}

else return 1 -> datum

}
List tail (List 1)

{
if( 1 == NULL) {error("tail of an empty list");}

else return 1 -> next

¥

Since (*foo) .bar often comes in practice



