
Fundamentals of Computing: Lecture 25

Piyush P Kurur

O�ce no: 224

Dept. of Comp. Sci. and Engg.

IIT Kanpur

October 5, 2009

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Summary of last class

I A structure is a way of constructing product types.

struct structure-name{

field declarations

};

I If foo is of type strunct Foo and bar is a �eld of the

structure Foo then the bar �eld of foo can be accessed via

the expression foo.bar

I Fields are both l-values as well as r-values.

I Structures are passed as values to function which is unlike

Java.

Examples

struct Vector2D {

double x;

double y;

};

typedef struct{

double x;

double y;

} Vector2D;

struct Vector2D{

double x;

double y;

} origin = {0,0};

Examples

struct Vector2D {

double x;

double y;

};

typedef struct{

double x;

double y;

} Vector2D;

struct Vector2D{

double x;

double y;

} origin = {0,0};

Examples

struct Vector2D {

double x;

double y;

};

typedef struct{

double x;

double y;

} Vector2D;

struct Vector2D{

double x;

double y;

} origin = {0,0};

Examples

struct Vector2D {

double x;

double y;

};

typedef struct{

double x;

double y;

} Vector2D;

struct Vector2D{

double x;

double y;

} origin = {0,0};

Structures are not passed as reference to functions.

#line 214 "lecture23.lhs"

#include <stdio.h>

void printVector(struct Vector2D);

void shiftByOneUnit(struct Vector2D u);

int main () {

printf("Before shift: ");printVector(origin);

shiftByOneUnit(origin);

printf("After shift: ");printVector(origin);

}

void shiftByOneUnit(struct Vector2D u){

u.x = u.x + 1;

}

void printVector(struct Vector2D u){

printf("(%f,%f)\n",u.x,u.y);

}

Structures are not passed as reference to functions.

#line 214 "lecture23.lhs"

#include <stdio.h>

void printVector(struct Vector2D);

void shiftByOneUnit(struct Vector2D u);

int main () {

printf("Before shift: ");printVector(origin);

shiftByOneUnit(origin);

printf("After shift: ");printVector(origin);

}

void shiftByOneUnit(struct Vector2D u){

u.x = u.x + 1;

}

void printVector(struct Vector2D u){

printf("(%f,%f)\n",u.x,u.y);

}

Recursive data types

I List.

A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees.

A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees).

Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Mathematically

L(a) = ?+ a� L(a)

BT (a) = ?+ a� BT (a)� BT (a)

T (a) = ?+ a� F (a)

F (a) = L(T (a))

In Haskell this would be

data List a = Empty | Cons a (List a)

data BinTree a = Empty | Node (BinTree a) a (BinTree a)

data Tree a = Empty | Node a [Tree a]

How does one simulate this in C?

An ugly dance involving structs and pointers.

typedef struct Node Node;

struct Node {

int datum;

Node * next;

};

typedef Node *List;

How does one simulate this in C?

An ugly dance involving structs and pointers.

typedef struct Node Node;

struct Node {

int datum;

Node * next;

};

typedef Node *List;

How does one simulate this in C?

An ugly dance involving structs and pointers.

typedef struct Node Node;

struct Node {

int datum;

Node * next;

};

typedef Node *List;

How does one simulate this in C?

An ugly dance involving structs and pointers.

typedef struct Node Node;

struct Node {

int datum;

Node * next;

};

typedef Node *List;

The head and tail function

data List a = Empty | Cons a (List a)

head (Cons x _) = x

tail (Cons _ xs) = xs

Since (*foo).bar often comes in practice

The head and tail function

data List a = Empty | Cons a (List a)

head (Cons x _) = x

tail (Cons _ xs) = xs

int head(List l)

{

if(l == NULL) {error("head of an empty list");}

else return (*l).datum

}

List tail (List l)

{

if(l == NULL) {error("tail of an empty list");}

else return (*l).next

}

Since (*foo).bar often comes in practice

The head and tail function

data List a = Empty | Cons a (List a)

head (Cons x _) = x

tail (Cons _ xs) = xs

int head(List l)

{

if(l == NULL) {error("head of an empty list");}

else return (*l).datum

}

List tail (List l)

{

if(l == NULL) {error("tail of an empty list");}

else return (*l).next

}

Since (*foo).bar often comes in practice

The head and tail function

data List a = Empty | Cons a (List a)

head (Cons x _) = x

tail (Cons _ xs) = xs

int head(List l)

{

if(l == NULL) {error("head of an empty list");}

else return l -> datum

}

List tail (List l)

{

if(l == NULL) {error("tail of an empty list");}

else return l -> next

}

Since (*foo).bar often comes in practice

