
Fundamentals of Computing: Lecture 27

Piyush P Kurur

O�ce no: 224

Dept. of Comp. Sci. and Engg.

IIT Kanpur

October 9, 2009

Recursive data types

I List.

A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees.

A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees).

Either an empty

tree or a node with a Forest of subtrees.

Recursive data types

I List. A list is either an empty list or an element followed by a

list.

I Binary trees. A binary tree is either an empty Tree or a root

node with two children left subtree and right subtree.

I General trees (some times called Rose trees). Either an empty

tree or a node with a Forest of subtrees.

List

data List a = Empty | Cons a (List a)

typedef struct Cons Cons;

typedef Cons *List

struct Cons {

int datum;

List next;

};

List emptyList = (List) NULL;

List

data List a = Empty | Cons a (List a)

typedef struct Cons Cons;

typedef Cons *List

struct Cons {

int datum;

List next;

};

List emptyList = (List) NULL;

int head(List l)

{

if(l == NULL) {error("head of an empty list");}

else return l -> datum

}

List tail (List l)

{

if(l == NULL) {error("tail of an empty list");}

else return l -> next

}

Some list functions

Function singleton(x) creates a list of just one element.

List singleton(int x){

List l;

l = (List) malloc(sizeof(Cons))

if(l != NULL)

{

l -> datum = x;

l -> next = NULL;

}

return l;

}

Some list functions

Function singleton(x) creates a list of just one element.

List singleton(int x){

List l;

l = (List) malloc(sizeof(Cons))

if(l != NULL)

{

l -> datum = x;

l -> next = NULL;

}

return l;

}

void appendTo(List *a, List b)

{

List ptr;

if(*a == NULL){

*a = b;

return;

}

ptr = *a;

while(ptr -> next != NULL)

{

ptr = ptr -> next;

}

ptr -> next = b;

return;

}

Reverse a list

2 : : : 42

p

15

q

100

r

34 : : : 1

Reverse a list

2 : : : 42

p

15

q

100

r

34 : : : 1

Reverse a list

2 : : : 42 15

p,q

100

r

34 : : : 1

Reverse a list

2 : : : 42 15

p

100

q,r

34 : : : 1

Reverse a list

2 : : : 42 15

p

100

q

34

r

: : : 1

Reverse a list

2 : : : 42 15

p

100

q

34

r

: : : 1

void reverse(List a)

{

List p,q,r;

if(a == NULL) return;

p = NULL;

q = a;

r = a -> next;

while(r)

{

q -> next = p;

p = q;

q = r;

r = r -> next;

}

}

