
Fundamentals of Computing: Lecture 31

Piyush P Kurur
O�ce no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

October 21, 2009

Summary of last class

I Files and directories
I Files are collection of data
I In Unix almost every thing is a �led
I Files are organised into directories.

I Operations on a �le (open, read/write, close)

Summary of last class

I Files and directories

I Files are collection of data
I In Unix almost every thing is a �led
I Files are organised into directories.

I Operations on a �le (open, read/write, close)

Summary of last class

I Files and directories
I Files are collection of data
I In Unix almost every thing is a �led
I Files are organised into directories.

I Operations on a �le (open, read/write, close)

Summary of last class

I Files and directories
I Files are collection of data
I In Unix almost every thing is a �led
I Files are organised into directories.

I Operations on a �le (open, read/write, close)

#include <stdio.h>

int main(int argc, char **argv)

{

int c;

FILE *fp;

for(int i = 1; i < argc; i++){

fp = fopen(argv[i], "r");

if(fp == NULL){

fprintf(stderr, "%s: cannot open %s\n", argv[0],argv[i]);

continue;

}

while((c = getc(fp)) != EOF){

putchar(c);

}

fclose(fp);

}

return 0;

}

The FILE type

I A �le is represented using a pointer to a FILE structure.

I All operations on a �le take this pointer as argument.

I The exact �elds of the FILE structure are not relevant to us.
It is FILE * that is interesting form the C programmers
perspective.

The FILE type

I A �le is represented using a pointer to a FILE structure.

I All operations on a �le take this pointer as argument.

I The exact �elds of the FILE structure are not relevant to us.
It is FILE * that is interesting form the C programmers
perspective.

The FILE type

I A �le is represented using a pointer to a FILE structure.

I All operations on a �le take this pointer as argument.

I The exact �elds of the FILE structure are not relevant to us.
It is FILE * that is interesting form the C programmers
perspective.

The FILE type

I A �le is represented using a pointer to a FILE structure.

I All operations on a �le take this pointer as argument.

I The exact �elds of the FILE structure are not relevant to us.
It is FILE * that is interesting form the C programmers
perspective.

Opening a �le

FILE * fopen(char *filename, char * mode);

I The function returns a FILE *.

I On error returns a null pointer.

I The mode parameter has the following interpretation
I "r" means read. If the �le does not exists fopen returns NULL.
I "w" means write. If the �le exists then truncates it.
I "a" write at the end of the �le. The contents are kept, and �le

created if it does not exist.

I You can also give "rw" for read and write.

I For more details type man fopen

Standard idiom of opening �les

FILE *fp;

if((fp = fopen("foo/bar/biz", "r") == NULL)

{

/* File does not exists or some error has occured.

Handle it*/

}else {

/* do some some thing useful with the file */

}

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

As far as C is concerned, a �le is a sequence of characters.

The functions fgetc and fputc

int fgetc(FILE *infp);

I fgetc reads a character for the the �le infp.

I infp should have been opened in read mode.

I The value returned by fgetc is EOF if end of �le is reached.

int fputc(int c, file *outfp);

I fputc writes the character corresponding to c in outfp.

I outfp should have been opened in write or append mode.

Standard idiom to use fgetc and fputc

void copy(FILE *infp, FILE *outfp)

{

int c;

while((c = fgetc(infp)) != EOF) fputc(c, outfp);

}

The function fscanf and fprintf

int fscanf(FILE *infp, char *fmt,...);

int fprintf(FILE *outfp, char *fmt, ...);

Same as scanf and printf but uses �les

Files opened at the start of the program

I The �les FILE *stdin, stdout, stderr are open when the
program starts.

I As the name suggests stdin is the input, stdout is the
output and stderr is for sending error messages.

eg. printf("%d %c",x,y) is equivalent to
fprintf(stdout,"%d %c",x,y)

Why do we need stderr

cat revisited

#include <stdio.h>

int main(int argc, char **argv)

{

int c;

FILE *fp;

for(int i = 1; i < argc; i++){

fp = fopen(argv[i], "r");

if(fp == NULL){

fprintf(stderr, "%s: cannot open %s\n", argv[0],argv[i]);

continue;

}

while((c = getc(fp)) != EOF){

putchar(c);

}

fclose(fp);

}

return 0;

}

