
Fundamentals of Computing: Lecture 7

Piyush P Kurur
Office no: 224

Dept. of Comp. Sci. and Engg.
IIT Kanpur

August 10, 2009

Summary of last class

I We studied arrays,

I Character type and String type (character array).

I printf and scanf.

Summary of last class

I We studied arrays,

I Character type and String type (character array).

I printf and scanf.

Summary of last class

I We studied arrays,

I Character type and String type (character array).

I printf and scanf.

Summary of last class

I We studied arrays,

I Character type and String type (character array).

I printf and scanf.

Summary of last class

I We studied arrays,

I Character type and String type (character array).

I printf and scanf.

Functions

Motivation

I Program fragments are used may times

I Better organisation of code (refactoring).

Function definition
type function-name(arg1,arg2,...,argn) statement-block
eg.

double square(double x)
{
return x * x;

}

Functions

Motivation

I Program fragments are used may times

I Better organisation of code (refactoring).

Function definition
type function-name(arg1,arg2,...,argn) statement-block
eg.

double square(double x)
{
return x * x;

}

Functions

Motivation

I Program fragments are used may times

I Better organisation of code (refactoring).

Function definition
type function-name(arg1,arg2,...,argn) statement-block
eg.

double square(double x)
{
return x * x;

}

Functions

Motivation

I Program fragments are used may times

I Better organisation of code (refactoring).

Function definition
type function-name(arg1,arg2,...,argn) statement-block

eg.

double square(double x)
{
return x * x;

}

Functions

Motivation

I Program fragments are used may times

I Better organisation of code (refactoring).

Function definition
type function-name(arg1,arg2,...,argn) statement-block
eg.

double square(double x)
{
return x * x;

}

A complete example

include <stdio.h>
void swap(int, int); /* declaration */
int main()
{
int x = 15, y = 42;
printf("x = %d, y = %d\n", x, y);
swap(x,y);
printf("x = %d, y = %d\n", x, y);

}

void swap(int u, int v)/* definition */
{

int temp;
temp = u;
u = v;
v = temp;
return;

}

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

Argument passing scheme: Call by value

C follows the call by value argument passing scheme.

I Only values are passed to the arguments,

I Changes to parameters in the function does not affect the
callee

Call by reference

I C has only call by value.

I Fortran has only call be reference.

I Pascal and C++ has both call be value and reference.

I Java as usual is muddled up. Basic values are call by value.
Objects are a call by reference.

The swap function C++ version

include <stdio.h>
void swap(int &, int &); // declaration
int main()
{
int x = 15, y = 42;
printf("x = %d, y = %d\n", x, y);
swap(x,y);
printf("x = %d, y = %d\n", x, y);

}
void swap(int &u, int &v) // definition
{

int temp;
temp = u;
u = v;
v = temp;
return;

}

The void type

I When the the function does not return any value.

I In certain places where any other type does not make sense.

void main(void)
{
printf("hello world\n");
return;

}

Recursion

Functions can call other functions and even itself

int factorial(int n)
{
if (n < 2)
{
return 1;

}
else
{
return n * factorial(n - 1);

}
}

The main function

I Every statement in a C program has to be part of some
function,

I The program execution starts by calling the main function,

I The return type of main can be either int or void,

I If return type is int, the return value is a way of indicating to
the shell if the command has succeeded,

I It is recommended that you declare main with return type int
and return meaningful status message.

The main function

I Every statement in a C program has to be part of some
function,

I The program execution starts by calling the main function,

I The return type of main can be either int or void,

I If return type is int, the return value is a way of indicating to
the shell if the command has succeeded,

I It is recommended that you declare main with return type int
and return meaningful status message.

The main function

I Every statement in a C program has to be part of some
function,

I The program execution starts by calling the main function,

I The return type of main can be either int or void,

I If return type is int, the return value is a way of indicating to
the shell if the command has succeeded,

I It is recommended that you declare main with return type int
and return meaningful status message.

The main function

I Every statement in a C program has to be part of some
function,

I The program execution starts by calling the main function,

I The return type of main can be either int or void,

I If return type is int, the return value is a way of indicating to
the shell if the command has succeeded,

I It is recommended that you declare main with return type int
and return meaningful status message.

The main function

I Every statement in a C program has to be part of some
function,

I The program execution starts by calling the main function,

I The return type of main can be either int or void,

I If return type is int, the return value is a way of indicating to
the shell if the command has succeeded,

I It is recommended that you declare main with return type int
and return meaningful status message.

