
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 12

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/


Statements and blocks

A statement is an expression followed by a semicolon (;)

i = 12 + 6 / 3;
Assignment (=) is an expression
i++;

A series of statements grouped together using braces ({}) is a block
of statements or a compound statement

{

i = 5;

i++;

}

A block of statements is treated as a single statement

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 12



Scope of a variable

Part of a program where a variable can be used is called its scope

Scope is the statement block where it is declared
Scope includes

All statements in the current block
All inner blocks, i.e., blocks contained inside the current block

Error in line 5 as i is not visible outside the block

1: {

2: int i = 5;

3: i--;

4: }

5: i++;

All right as i is visible in all inner blocks

1: int i = 5;

2: {

3: i++;

4: }

5: i--;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12



Scope of a variable

Part of a program where a variable can be used is called its scope

Scope is the statement block where it is declared
Scope includes

All statements in the current block
All inner blocks, i.e., blocks contained inside the current block

Error in line 5 as i is not visible outside the block

1: {

2: int i = 5;

3: i--;

4: }

5: i++;

All right as i is visible in all inner blocks

1: int i = 5;

2: {

3: i++;

4: }

5: i--;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12



Scope of a variable

Part of a program where a variable can be used is called its scope

Scope is the statement block where it is declared
Scope includes

All statements in the current block
All inner blocks, i.e., blocks contained inside the current block

Error in line 5 as i is not visible outside the block

1: {

2: int i = 5;

3: i--;

4: }

5: i++;

All right as i is visible in all inner blocks

1: int i = 5;

2: {

3: i++;

4: }

5: i--;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12



if statement

Decision making

Find the minimum of two integers

Algorithm
1 Compare the two integers x and y
2 If x < y, then min = x
3 Otherwise, min = y

To capture the above logic in C, if statements are used

if (condition)

{

statements1

}

else

{

statements2

}

Entire if else is a single statement

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 12



if statement

Decision making

Find the minimum of two integers

Algorithm
1 Compare the two integers x and y
2 If x < y, then min = x
3 Otherwise, min = y

To capture the above logic in C, if statements are used

if (condition)

{

statements1

}

else

{

statements2

}

Entire if else is a single statement

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 12



if statement

Decision making

Find the minimum of two integers

Algorithm
1 Compare the two integers x and y
2 If x < y, then min = x
3 Otherwise, min = y

To capture the above logic in C, if statements are used

if (condition)

{

statements1

}

else

{

statements2

}

Entire if else is a single statement

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 12



Example

Find the minimum of two integers
Algorithm

1 Compare the two integers x and y
2 If x < y, then min = x
3 Otherwise, min = y

C code

#include <stdio.h>

int main()

{

int x, y;

int min;

scanf(‘‘%d’’, &x);

scanf(‘‘%d’’, &y);

if (x < y)

min = x;

else

min = y;

printf(‘‘Minimum is %d\n’’, min);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 12



Understanding if

condition must evaluate to a boolean value

When it is true, the if part is executed

Otherwise (i.e., when it is false), the else part is executed

All numbers, characters, etc. are treated as booleans

Any expression fits as condition

if (5 - 3)

...

evaluates to

true

if (5 - 5)

...

evaluates to false

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12



Understanding if

condition must evaluate to a boolean value

When it is true, the if part is executed

Otherwise (i.e., when it is false), the else part is executed

All numbers, characters, etc. are treated as booleans

Any expression fits as condition

if (5 - 3)

...

evaluates to true

if (5 - 5)

...

evaluates to

false

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12



Understanding if

condition must evaluate to a boolean value

When it is true, the if part is executed

Otherwise (i.e., when it is false), the else part is executed

All numbers, characters, etc. are treated as booleans

Any expression fits as condition

if (5 - 3)

...

evaluates to true

if (5 - 5)

...

evaluates to false

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12



More syntax

Block of statements may be used in if and else part

if (condition)

{

statement1

statement2

}

else

{

statement3

statement4

}

Since block of statements is equivalent to a single statement, the
above is really the same

Important: else part may be omitted

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12



Nested if

else with more than one previous if is ambiguous

if ((x + y) > 0)

if (x < y)

printf(‘‘x is minimum ’’);

else

printf(‘‘y is minimum ’’);

Rule: else is associated with nearest else-less if
Comment: Indenting program correctly helps in understanding (as
shown in previous code snippet)

Use braces if intended otherwise

if ((x + y) > 0)

{

if (x < y)

printf(‘‘x is minimum ’’);

}

else

printf(‘‘x + y is negative ’’);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12



Nested if

else with more than one previous if is ambiguous

if ((x + y) > 0)

if (x < y)

printf(‘‘x is minimum ’’);

else

printf(‘‘y is minimum ’’);

Rule: else is associated with nearest else-less if
Comment: Indenting program correctly helps in understanding (as
shown in previous code snippet)

Use braces if intended otherwise

if ((x + y) > 0)

{

if (x < y)

printf(‘‘x is minimum ’’);

}

else

printf(‘‘x + y is negative ’’);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12



Nested if

else with more than one previous if is ambiguous

if ((x + y) > 0)

if (x < y)

printf(‘‘x is minimum ’’);

else

printf(‘‘y is minimum ’’);

Rule: else is associated with nearest else-less if
Comment: Indenting program correctly helps in understanding (as
shown in previous code snippet)

Use braces if intended otherwise

if ((x + y) > 0)

{

if (x < y)

printf(‘‘x is minimum ’’);

}

else

printf(‘‘x + y is negative ’’);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12



else if statement

Testing more than two conditions can be done using else if

if (x < 0)

printf(‘‘Negative ’’);

else

if (x > 0)

printf(‘‘Positive ’’);

else

printf(‘‘Zero’’);

is equivalent to

if (x < 0)

printf(‘‘Negative ’’);

else if (x > 0)

printf(‘‘Positive ’’);

else

printf(‘‘Zero’’);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12



Multiple else if

Consider

if (section == 1)

printf(‘‘TB101 ’’);

else if (section == 2)

printf(‘‘TB102 ’’);

else if (section == 15)

printf(‘‘WL226 ’’);

else

printf(‘‘Wrong section ’’);

Multiple else if statements are better written using switch case
switch case works only when the same variable is tested for equality
against different values

switch (section)

{

case 1: printf(‘‘TB101 ’’); break;

case 2: printf(‘‘TB102 ’’); break;

case 15: printf(‘‘WL226 ’’); break;

default: printf(‘‘Wrong section ’’); break;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12



switch case statement

switch (variable)

{

case value1: statements1; break;

case value2: statements2; break;

...

default: statementsn; break;

}

default is executed when variable evaluates to none of the other
values in case

Important: Without break, next case is also executed

switch (x)

{

case 0: printf(‘‘0’’);

case 1: printf(‘‘1’’);

default: printf(‘‘2’’);

}

When x is 0, all of 0, 1 and 2 are printed
When x is 1, both 1 and 2 are printed

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12



switch case statement

switch (variable)

{

case value1: statements1; break;

case value2: statements2; break;

...

default: statementsn; break;

}

default is executed when variable evaluates to none of the other
values in case
Important: Without break, next case is also executed

switch (x)

{

case 0: printf(‘‘0’’);

case 1: printf(‘‘1’’);

default: printf(‘‘2’’);

}

When x is 0, all of 0, 1 and 2 are printed
When x is 1, both 1 and 2 are printed

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12



switch case without break

switch case without break is useful when same statement needs to
be executed for multiple cases

Suppose there are two sections 1 and 2 on Monday, two sections 3
and 4 on Tuesday, and others on Wednesday

Output the day based on input section

switch (section)

{

case 1: ;

case 2: printf(‘‘Monday ’’); break;

case 3: ;

case 4: printf(‘‘Tuesday ’’); break;

default: printf(‘‘Wednesday ’’); break;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 12


	Statements

