
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 16

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/


Linked Lists

Linked lists are dynamic data structures

Data structure: They simulate lists of elements

Dynamic: Size of a linked list grows or shrinks during the execution of
a program and is just right

Advantage: It provides flexibility in inserting and deleting elements by
just re-arranging the links

Disadvantage: Accessing a particular element is not easy

There are three major operations on linked lists
1 Insertion
2 Deletion
3 Searching

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 16



Linked Lists

Linked lists are dynamic data structures

Data structure: They simulate lists of elements

Dynamic: Size of a linked list grows or shrinks during the execution of
a program and is just right

Advantage: It provides flexibility in inserting and deleting elements by
just re-arranging the links

Disadvantage: Accessing a particular element is not easy

There are three major operations on linked lists
1 Insertion
2 Deletion
3 Searching

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 16



Structure of a linked list

A linked list contains data

Each element of the list must also link with the next element
Therefore, a structure containing data and link is created

Data can be anything

The link or pointer is to the same type of structure again

struct Node

{

int data;

struct Node *next;

};

This is called a self-referential pointer

A linked list is simply a chain of such nodes

The beginning of the list is maintained as a pointer to node (generally
called head)
When a new node (say q) is created (using malloc),

q->data is the desired value
q->next is NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 16



Structure of a linked list

A linked list contains data

Each element of the list must also link with the next element
Therefore, a structure containing data and link is created

Data can be anything

The link or pointer is to the same type of structure again

struct Node

{

int data;

struct Node *next;

};

This is called a self-referential pointer

A linked list is simply a chain of such nodes

The beginning of the list is maintained as a pointer to node (generally
called head)

When a new node (say q) is created (using malloc),
q->data is the desired value
q->next is NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 16



Structure of a linked list

A linked list contains data

Each element of the list must also link with the next element
Therefore, a structure containing data and link is created

Data can be anything

The link or pointer is to the same type of structure again

struct Node

{

int data;

struct Node *next;

};

This is called a self-referential pointer

A linked list is simply a chain of such nodes

The beginning of the list is maintained as a pointer to node (generally
called head)
When a new node (say q) is created (using malloc),

q->data is the desired value
q->next is NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 16



Insertion at the beginning

Create a new node (say q)

Make q->next point to h

Make head equal to q

If list is empty, i.e., head is NULL
Make head equal to q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 16



Insertion at the beginning

Create a new node (say q)

Make q->next point to h

Make head equal to q

If list is empty, i.e., head is NULL
Make head equal to q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 16



Insertion at the end

Create a new node (say q)

Find the last element (say p)

Make p->next point to q

If list is empty, i.e., head is NULL
Make head equal to q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 16



Insertion at the end

Create a new node (say q)

Find the last element (say p)

Make p->next point to q

If list is empty, i.e., head is NULL
Make head equal to q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 16



Deletion from the beginning

Make p equal to head

Make head equal to head->next

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 16



Deletion from the beginning

Make p equal to head

Make head equal to head->next

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 16



Deletion from the beginning

Make p equal to head

Make head equal to head->next

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 16



Deletion from the end

Find the last element (say p)

While finding p, maintain q that points to p
q is the node just before p, i.e., q->next is p

Make q->next NULL

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 16



Deletion from the end

Find the last element (say p)

While finding p, maintain q that points to p
q is the node just before p, i.e., q->next is p

Make q->next NULL

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 16



Deletion from the end

Find the last element (say p)

While finding p, maintain q that points to p
q is the node just before p, i.e., q->next is p

Make q->next NULL

Delete p (by using free)

If list is empty, i.e., head is NULL
Nothing to do

If list contains only one element

Delete head
head is now NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 16



Searching a node (insert after, delete after)

Make p equal to head

While p->data not equal to the data that is being searched, make p
equal to p->next

Using search, insert after and delete after operations can be
implemented

Insert after p
Create a new node q
Make q->next equal to p->next
Make p->next equal to q

Delete after p
Call the next node, i.e., p->next as q
Make p->next equal to q->next
Delete q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 16



Searching a node (insert after, delete after)

Make p equal to head

While p->data not equal to the data that is being searched, make p
equal to p->next

Using search, insert after and delete after operations can be
implemented

Insert after p
Create a new node q
Make q->next equal to p->next
Make p->next equal to q

Delete after p
Call the next node, i.e., p->next as q
Make p->next equal to q->next
Delete q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 16



Searching a node (insert after, delete after)

Make p equal to head

While p->data not equal to the data that is being searched, make p
equal to p->next

Using search, insert after and delete after operations can be
implemented

Insert after p
Create a new node q
Make q->next equal to p->next
Make p->next equal to q

Delete after p
Call the next node, i.e., p->next as q
Make p->next equal to q->next
Delete q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 16



Searching a node (insert after, delete after)

Make p equal to head

While p->data not equal to the data that is being searched, make p
equal to p->next

Using search, insert after and delete after operations can be
implemented

Insert after p
Create a new node q
Make q->next equal to p->next
Make p->next equal to q

Delete after p
Call the next node, i.e., p->next as q
Make p->next equal to q->next
Delete q

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 16



Linked list operations I

#include <stdio.h>

#include <stdlib.h>

typedef struct Node

{

int data; // data of a node: list is made of these elements

struct Node *next; // link to the next node

} node;

node *create_node(int val)

{

node *n;

n = malloc(sizeof(node));

n->data = val;

n->next = NULL;

return n;

}

void print_list(node *h)

{

node *p;

p = h;

while (p != NULL)

{

printf("%d --> ", p->data);

p = p->next;

}

printf("NULL\n");

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 16



Linked list operations II

int main()

{

node *head = NULL; // head maintains the entry to the list

node *p = NULL , *q = NULL;

int v = -1, a;

printf("Inserting at end\n");

scanf("%d", &v);

while (v != -1)

{

q = create_node(v);

if (head == NULL)

head = q;

else

{

p = head;

while (p->next != NULL)

p = p->next;

p->next = q;

}

scanf("%d", &v);

}

print_list(head);

printf("Inserting at beginning\n");

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 16



Linked list operations III

scanf("%d", &v);

while (v != -1)

{

q = create_node(v);

q->next = head;

head = q;

scanf("%d", &v);

}

print_list(head);

printf("Inserting after\n");

scanf("%d", &v);

while (v != -1)

{

q = create_node(v);

scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

p = p->next;

if (p != NULL)

{

q->next = p->next;

p->next = q;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 16



Linked list operations IV

scanf("%d", &v);

}

print_list(head);

printf("Deleting from end\n");

if (head != NULL)

{

p = head;

while (p->next != NULL)

{

q = p;

p = p->next;

}

q->next = NULL;

free(p);

}

print_list(head);

printf("Deleting from beginning\n");

if (head != NULL)

{

p = head;

head = head ->next;

free(p);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 16



Linked list operations V

}

print_list(head);

printf("Deleting after\n");

scanf("%d", &a);

p = head;

while ((p != NULL) && (p->data != a))

p = p->next;

if (p != NULL)

{

q = p->next;

if (q != NULL)

{

p->next = q->next;

free(q);

}

}

print_list(head);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 13 / 16



Uses of linked lists

Linked lists are used to simulate two very important data structures
1 Stack
2 Queue

Stack: Last-in first-out

Example: stack of dishes

Operations

Push: insert at the beginning
Pop: delete from the beginning

Queue: First-in first-out

Example: queue of people

Operations

Enqueue: insert at the end
Dequeue: delete from the beginning

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 16



Uses of linked lists

Linked lists are used to simulate two very important data structures
1 Stack
2 Queue

Stack: Last-in first-out

Example: stack of dishes

Operations

Push: insert at the beginning
Pop: delete from the beginning

Queue: First-in first-out

Example: queue of people

Operations

Enqueue: insert at the end
Dequeue: delete from the beginning

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 16



Uses of linked lists

Linked lists are used to simulate two very important data structures
1 Stack
2 Queue

Stack: Last-in first-out

Example: stack of dishes

Operations

Push: insert at the beginning
Pop: delete from the beginning

Queue: First-in first-out

Example: queue of people

Operations

Enqueue: insert at the end
Dequeue: delete from the beginning

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 16



Variants of linked lists

The simple version is called a singly linked list

When a node contains pointers to both previous and next nodes in
the list, it is called a doubly linked list

When the next pointer of the last element in the list points back to
the head, it is called a circular linked list

When the previous pointer of head points to the last element
(generally called tail), it is called a circular doubly linked list

Instead of a list, nodes can be arranged in a hierarchical manner also

It is then called a tree

In a binary tree, a node points to two children nodes

It may also point to a parent node

The pointer to the structure is maintained as the root of the tree

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 16



Variants of linked lists

The simple version is called a singly linked list

When a node contains pointers to both previous and next nodes in
the list, it is called a doubly linked list

When the next pointer of the last element in the list points back to
the head, it is called a circular linked list

When the previous pointer of head points to the last element
(generally called tail), it is called a circular doubly linked list

Instead of a list, nodes can be arranged in a hierarchical manner also

It is then called a tree

In a binary tree, a node points to two children nodes

It may also point to a parent node

The pointer to the structure is maintained as the root of the tree

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 16



Variants of linked lists

The simple version is called a singly linked list

When a node contains pointers to both previous and next nodes in
the list, it is called a doubly linked list

When the next pointer of the last element in the list points back to
the head, it is called a circular linked list

When the previous pointer of head points to the last element
(generally called tail), it is called a circular doubly linked list

Instead of a list, nodes can be arranged in a hierarchical manner also

It is then called a tree

In a binary tree, a node points to two children nodes

It may also point to a parent node

The pointer to the structure is maintained as the root of the tree

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 16



Variants of linked lists

The simple version is called a singly linked list

When a node contains pointers to both previous and next nodes in
the list, it is called a doubly linked list

When the next pointer of the last element in the list points back to
the head, it is called a circular linked list

When the previous pointer of head points to the last element
(generally called tail), it is called a circular doubly linked list

Instead of a list, nodes can be arranged in a hierarchical manner also

It is then called a tree

In a binary tree, a node points to two children nodes

It may also point to a parent node

The pointer to the structure is maintained as the root of the tree

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 16



Variants of linked lists

The simple version is called a singly linked list

When a node contains pointers to both previous and next nodes in
the list, it is called a doubly linked list

When the next pointer of the last element in the list points back to
the head, it is called a circular linked list

When the previous pointer of head points to the last element
(generally called tail), it is called a circular doubly linked list

Instead of a list, nodes can be arranged in a hierarchical manner also

It is then called a tree

In a binary tree, a node points to two children nodes

It may also point to a parent node

The pointer to the structure is maintained as the root of the tree

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 16



Binary search tree

A binary search tree is a binary tree

Every node has two child pointers: left and right

The values of all data at the tree rooted at the left child must be
less than or equal to the value of the data at a node

The values of all data at tree rooted at the right child must be
greater than the value of the data at a node

It facilitates faster searching of a value

9 can be searched in 3 steps

5

3 7

962

8

NULLNULL NULL NULL NULL

NULLNULL

NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 16 / 16



Binary search tree

A binary search tree is a binary tree

Every node has two child pointers: left and right

The values of all data at the tree rooted at the left child must be
less than or equal to the value of the data at a node

The values of all data at tree rooted at the right child must be
greater than the value of the data at a node

It facilitates faster searching of a value

9 can be searched in 3 steps

5

3 7

962

8

NULLNULL NULL NULL NULL

NULLNULL

NULL

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 16 / 16


	Linked List

