
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 8

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/

Loops

Print all numbers between 1 and 100 that are divisible by 7

Algorithm
1 Initialize x = 1
2 Test if x is divisible by 7
3 If yes, output
4 Increment x
5 If x <= 100, go back to step 2

Requires loops – instructions that are repeated a number of times

Each time (called an iteration), some variable may change

For a loop to stop, either of these must be specified

Number of times the loop runs
Stopping condition

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8

Loops

Print all numbers between 1 and 100 that are divisible by 7

Algorithm
1 Initialize x = 1
2 Test if x is divisible by 7
3 If yes, output
4 Increment x
5 If x <= 100, go back to step 2

Requires loops – instructions that are repeated a number of times

Each time (called an iteration), some variable may change

For a loop to stop, either of these must be specified

Number of times the loop runs
Stopping condition

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8

while statement

while (condition)

{

statements

}

condition evaluates to a boolean
The statements in the loop are executed as long as condition is true
Any expression fits as condition
Value of condition, if initially true, must change at some
appropriate later point to false

Otherwise, infinite loop is created

Print all numbers between 1 and 100 that are divisible by 7

x = 1;

while (x <= 100)

{

if ((x % 7) == 0)

printf(‘‘%d ’’, x);

x++;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 8

while statement

while (condition)

{

statements

}

condition evaluates to a boolean
The statements in the loop are executed as long as condition is true
Any expression fits as condition
Value of condition, if initially true, must change at some
appropriate later point to false

Otherwise, infinite loop is created

Print all numbers between 1 and 100 that are divisible by 7

x = 1;

while (x <= 100)

{

if ((x % 7) == 0)

printf(‘‘%d ’’, x);

x++;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 8

for statement

for (initialization; condition; update)

{

statements

}

condition evaluates to a boolean
The statements in the loop are executed as long as condition is true
initialization initializes variables
update updates the condition
Value of condition, if initially true, must change at some
appropriate later point to false

Otherwise, infinite loop is created

Print all numbers between 1 and 100 that are divisible by 7

for (x = 1; x <= 100; x++)

{

if ((x % 7) == 0)

printf(‘‘%d ’’, x);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 8

for statement

for (initialization; condition; update)

{

statements

}

condition evaluates to a boolean
The statements in the loop are executed as long as condition is true
initialization initializes variables
update updates the condition
Value of condition, if initially true, must change at some
appropriate later point to false

Otherwise, infinite loop is created

Print all numbers between 1 and 100 that are divisible by 7

for (x = 1; x <= 100; x++)

{

if ((x % 7) == 0)

printf(‘‘%d ’’, x);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 8

Equivalence of while and for statements

while and for statements are equivalent

for (initialization; condition; update)

{

statements;

}

translates to

initialization;

while (condition)

{

statements;

update;

}

and vice versa

It is a matter of convenience and ease

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 8

Example

Given a geometric progression with first term a and common ratio r,
print the first n terms

Inputs: a and r are real numbers while n is an integer

for (i = 1; i <= n; i++)

{

x = a * pow(r, i - 1);

printf(‘‘%f\n’’, x);

}

Comment: pow(x,y) function computes xy

Requires #include <math.h> and gcc -lm

Could also have been written as

x = a;

for (i = 1; i <= n; i++)

{

printf(‘‘%f\n’’, x);

x = x * r;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 8

Example

Given a geometric progression with first term a and common ratio r,
print the first n terms

Inputs: a and r are real numbers while n is an integer

for (i = 1; i <= n; i++)

{

x = a * pow(r, i - 1);

printf(‘‘%f\n’’, x);

}

Comment: pow(x,y) function computes xy

Requires #include <math.h> and gcc -lm

Could also have been written as

x = a;

for (i = 1; i <= n; i++)

{

printf(‘‘%f\n’’, x);

x = x * r;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 8

Breaking out of a loop

A loop can be exited straightaway by using a break statement

Find the first number between 103 and 145 that is divisible by 23

for (x = 103; x <= 145; x++)

{

if ((x % 23) == 0)

{

printf(‘‘%d ’’, x);

break;

}

}

After the number is found, it does not make sense to continue

break immediately exits the loop

If there are multiple nested loops, break exits only the one where it
resides

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 8

Breaking out of an iteration of a loop

A particular iteration of a loop can be skipped by using a continue
statement

Add all numbers between 103 and 145 that are not divisible by 7

sum = 0;

for (x = 103; x <= 145; x++)

{

if ((x % 7) == 0)

{

continue;

}

sum = sum + x;

}

When a number is found to be divisible by 7, the rest of the loop
should not be executed

continue immediately stops the current iteration and starts the next

If there are multiple nested loops, continue exits the current
iteration of only the one where it resides

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 8

	Loops

