
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 15

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/


Multi-dimensional arrays

A single-dimensional array

int b[3];

is stored in the following way:

10 ...13

b[0] b[1] b[2]

5 9

Multi-dimensional arrays are stored row-wise in memory

A two-dimensional array

int a[2][3];

is stored in the following way:

10 25 ...

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

5 9 17 2113

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 15



Multi-dimensional arrays

A single-dimensional array

int b[3];

is stored in the following way:

10 ...13

b[0] b[1] b[2]

5 9

Multi-dimensional arrays are stored row-wise in memory

A two-dimensional array

int a[2][3];

is stored in the following way:

10 25 ...

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2]

5 9 17 2113

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 15



Multi-dimensional arrays and pointers

A multi-dimensional array name is again a pointer
An array element a[i][j] is equivalent to *(*(a + i) + j)

a points to first row
(a + i) points to ith row
*(a + i) points to first element of ith row
(*(a + i) + j) points to jth element of ith row
*(*(a + i) + j) is the value of jth element of ith row

If a is declared as

int a[2][3];

address of a[i][j]
= a + i ∗ sizeof (row) + j ∗ sizeof (int)
= a + i ∗ (number of elements in row) ∗ sizeof (int) + j ∗ sizeof (int)
= a + 12 ∗ i + 4 ∗ j
For example, if a is at address 1, a[1][1] is at address
1 + 12 ∗ 1 + 4 ∗ 1 = 17
Since size of row requires number of elements, this number is required
when multi-dimensional arrays are passed to functions

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 15



Multi-dimensional arrays and pointers

A multi-dimensional array name is again a pointer
An array element a[i][j] is equivalent to *(*(a + i) + j)

a points to first row
(a + i) points to ith row
*(a + i) points to first element of ith row
(*(a + i) + j) points to jth element of ith row
*(*(a + i) + j) is the value of jth element of ith row

If a is declared as

int a[2][3];

address of a[i][j]
= a + i ∗ sizeof (row) + j ∗ sizeof (int)
= a + i ∗ (number of elements in row) ∗ sizeof (int) + j ∗ sizeof (int)
= a + 12 ∗ i + 4 ∗ j
For example, if a is at address 1, a[1][1] is at address
1 + 12 ∗ 1 + 4 ∗ 1 = 17

Since size of row requires number of elements, this number is required
when multi-dimensional arrays are passed to functions

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 15



Multi-dimensional arrays and pointers

A multi-dimensional array name is again a pointer
An array element a[i][j] is equivalent to *(*(a + i) + j)

a points to first row
(a + i) points to ith row
*(a + i) points to first element of ith row
(*(a + i) + j) points to jth element of ith row
*(*(a + i) + j) is the value of jth element of ith row

If a is declared as

int a[2][3];

address of a[i][j]
= a + i ∗ sizeof (row) + j ∗ sizeof (int)
= a + i ∗ (number of elements in row) ∗ sizeof (int) + j ∗ sizeof (int)
= a + 12 ∗ i + 4 ∗ j
For example, if a is at address 1, a[1][1] is at address
1 + 12 ∗ 1 + 4 ∗ 1 = 17
Since size of row requires number of elements, this number is required
when multi-dimensional arrays are passed to functions

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 15



Passing multi-dimensional arrays to functions

Size of row is required when multi-dimensional arrays are passed to
functions

void f(int b[][3])

{

...

}

It is called by simply passing the array name

f(a);

Reason: To compute the address of a + 1 correctly

a + 1 points to the next row

So, size of row, i.e., number of elements in the row is required

Passing an array with more or less number of elements in the row
results in accessing elements row-wise

For the same reason, for multi-dimensional arrays, all sizes except the
first are required

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 15



Passing multi-dimensional arrays to functions

Size of row is required when multi-dimensional arrays are passed to
functions

void f(int b[][3])

{

...

}

It is called by simply passing the array name

f(a);

Reason: To compute the address of a + 1 correctly

a + 1 points to the next row

So, size of row, i.e., number of elements in the row is required

Passing an array with more or less number of elements in the row
results in accessing elements row-wise

For the same reason, for multi-dimensional arrays, all sizes except the
first are required

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 15



Passing multi-dimensional arrays to functions

Size of row is required when multi-dimensional arrays are passed to
functions

void f(int b[][3])

{

...

}

It is called by simply passing the array name

f(a);

Reason: To compute the address of a + 1 correctly

a + 1 points to the next row

So, size of row, i.e., number of elements in the row is required

Passing an array with more or less number of elements in the row
results in accessing elements row-wise

For the same reason, for multi-dimensional arrays, all sizes except the
first are required

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 15



Pointer operations I

#include <stdio.h>

void f_eq(int b[][4])

{

int i, j;

for (i = 0; i < 3; i++)

{

for (j = 0; j < 4; j++)

printf("%d\t", b[i][j]);

printf("\n");

}

}

void f_more(int b[][5])

{

int i, j;

for (i = 0; i < 3; i++)

{

for (j = 0; j < 5; j++)

printf("%d\t", b[i][j]);

printf("\n");

}

}

void f_less(int b[][3])

{

int i, j;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 15



Pointer operations II

for (i = 0; i < 3; i++)

{

for (j = 0; j < 3; j++)

printf("%d\t", b[i][j]);

printf("\n");

}

}

int main()

{

int a[3][4];

int i, j;

for (i = 0; i < 3; i++)

for (j = 0; j < 4; j++)

a[i][j] = 10 * i + j;

f_eq(a);

f_more(a);

f_less(a);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 15



Returning pointers

Since a pointer is a variable, a function can return a pointer

The declaration

char *f(char *s, char *t)

declares f to be a function that returns a pointer to char

Example: Function that returns the copy of a string

char *strcpy(char *t)

{

char s[30]; // note array declaration

for (; *s = *t; s++, t++)

;

return s; // note return of array name as pointer

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 15



Returning pointers

Since a pointer is a variable, a function can return a pointer

The declaration

char *f(char *s, char *t)

declares f to be a function that returns a pointer to char

Example: Function that returns the copy of a string

char *strcpy(char *t)

{

char s[30]; // note array declaration

for (; *s = *t; s++, t++)

;

return s; // note return of array name as pointer

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 15



Arrays of pointers

Since a pointer is a variable, arrays of pointers can be declared

The declaration

char *a[3];

declares a to be an array of 3 pointers to char

a[i] is a pointer to char

Common way to declare arrays of strings

Very useful since the strings can be of variable size

char *a[3] =

{

‘‘Kolkata ’’,

‘‘Kanpur ’’,

‘‘Hyderabad ’’

};

How to declare the size of the array pointed to by each a[i]
otherwise?

It requires dynamic memory allocation

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 15



Arrays of pointers

Since a pointer is a variable, arrays of pointers can be declared

The declaration

char *a[3];

declares a to be an array of 3 pointers to char

a[i] is a pointer to char

Common way to declare arrays of strings

Very useful since the strings can be of variable size

char *a[3] =

{

‘‘Kolkata ’’,

‘‘Kanpur ’’,

‘‘Hyderabad ’’

};

How to declare the size of the array pointed to by each a[i]
otherwise?

It requires dynamic memory allocation

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 15



Arrays of pointers

Since a pointer is a variable, arrays of pointers can be declared

The declaration

char *a[3];

declares a to be an array of 3 pointers to char

a[i] is a pointer to char

Common way to declare arrays of strings

Very useful since the strings can be of variable size

char *a[3] =

{

‘‘Kolkata ’’,

‘‘Kanpur ’’,

‘‘Hyderabad ’’

};

How to declare the size of the array pointed to by each a[i]
otherwise?

It requires dynamic memory allocation

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 15



Dynamic memory allocation

Dynamic memory allocation is required when the programmer cannot
determine in advance how much space will be required by the program
Putting a large number as the maximum limit works, but it wastes a
lot of memory
Space is dynamically allocated using malloc
It takes size in bytes as a parameter and returns void *, i.e., a
pointer without a specific type

So, it requires explicit type casting
Example: The following code
int *a;

a = (int *) malloc (5 * sizeof(int));

is equivalent to declaring an array of 5 integers
int a[5];

If space cannot be allocated, null pointer is returned
Space should be freed after use using free
It takes a pointer allocated using malloc as a parameter
free(a);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 15



Dynamic memory allocation

Dynamic memory allocation is required when the programmer cannot
determine in advance how much space will be required by the program
Putting a large number as the maximum limit works, but it wastes a
lot of memory
Space is dynamically allocated using malloc
It takes size in bytes as a parameter and returns void *, i.e., a
pointer without a specific type
So, it requires explicit type casting
Example: The following code
int *a;

a = (int *) malloc (5 * sizeof(int));

is equivalent to declaring an array of 5 integers
int a[5];

If space cannot be allocated, null pointer is returned

Space should be freed after use using free
It takes a pointer allocated using malloc as a parameter
free(a);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 15



Dynamic memory allocation

Dynamic memory allocation is required when the programmer cannot
determine in advance how much space will be required by the program
Putting a large number as the maximum limit works, but it wastes a
lot of memory
Space is dynamically allocated using malloc
It takes size in bytes as a parameter and returns void *, i.e., a
pointer without a specific type
So, it requires explicit type casting
Example: The following code
int *a;

a = (int *) malloc (5 * sizeof(int));

is equivalent to declaring an array of 5 integers
int a[5];

If space cannot be allocated, null pointer is returned
Space should be freed after use using free
It takes a pointer allocated using malloc as a parameter
free(a);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 15



Dynamic array

#include <stdio.h>

#include <stdlib.h> // required for malloc

int main()

{

double *a;

int i, n;

double b[7];

printf("Enter the size of array: ");

scanf("%d", &n);

a = (double *) malloc(n * sizeof(double)); // sizeof(double) is required as it is in

bytes

printf("Size of a is %d\n", sizeof(a)); // size of the pointer

printf("Size of b is %d\n", sizeof(b)); // size of array is the total space allotted

in bytes

printf("Number of elements in b is %d\n", sizeof(b) / sizeof(double));

for (i = 0; i < n; i++)

a[i] = i; // array notation

for (i = 0; i < n; i++)

printf("%lf %lf\t", a[i], *(a + i));

printf("\n");

printf("&a is %u, while a[0] is at %u\n", &a, &a[0]); // a is a separate variable

stored elsewhere

printf("&b is %u, while b[0] is at %u\n", &b, &b[0]); // b is not stored separately

free(a); // important as otherwise space is not freed

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 15



Dynamic allocation

a is a pointer and is, therefore, stored as a variable separately

When space is allocated, the value of a is appropriately modified to
point to the beginning of that space

a[0], a[1], etc. are stored in that space

b, on the other hand, is just an array name and not stored explicitly

a

40

a[0] a[1] b[0] b[1]

b

40 80

... ...

48 88

a needs 4 bytes of storage as it is a pointer

Each a[i] needs 8 bytes of storage as they are doubles

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 15



Arrays of pointers: dynamic allocation

Since a pointer is a variable, arrays of pointers can be declared

The declaration

char *a[3];

declares a to be an array of 3 pointers to char

a[i] is a pointer to char

Common way to declare arrays of strings

Very useful since the strings can be of variable size

How to declare the size of the array pointed to by each a[i]?

It requires dynamic memory allocation

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 15



Arrays of pointers: dynamic allocation

Since a pointer is a variable, arrays of pointers can be declared

The declaration

char *a[3];

declares a to be an array of 3 pointers to char

a[i] is a pointer to char

Common way to declare arrays of strings

Very useful since the strings can be of variable size

How to declare the size of the array pointed to by each a[i]?

It requires dynamic memory allocation

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 15



Dynamic array I

#include <stdio.h>

#include <stdlib.h>

int main()

{

char *a[3];

int i, n;

for (i = 0; i < 3; i++)

{

printf("Enter maximum length of string %d: ", i);

scanf("%d", &n);

a[i] = (char *) malloc(n * sizeof(char)); // allocate space for each a[i]

}

for (i = 0; i < 3; i++)

{

printf("Enter string %d: ", i);

scanf("%s", a[i]);

}

for (i = 0; i < 3; i++)

printf("%s\n", a[i]);

printf("Size of a is %d\n", sizeof(a));

for (i = 0; i < 3; i++)

printf("Size of a[%d] is %d\n", i, sizeof(a[i]));

printf("a is at %u\n", &a);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 13 / 15



Dynamic array II

for (i = 0; i < 3; i++)

printf("a[%d] is at %u\n", i, &a[i]);

for (i = 0; i < 3; i++)

printf("a[%d][0] is at %u\n", i, &a[i][0]);

for (i = 0; i < 3; i++)

free(a[i]); // free each a[i]

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 15



Array of pointers

a is simply an array

Each a[i] is a pointer and is, therefore, stored as a variable separately

When space is allocated, the value of a[i] is appropriately modified
to point to the beginning of that space

a[i][0], a[i][1], etc. are stored in that space

120 60

...a[0] a[1] a[2] ...

a

...

16 20 40 41 61 90 91

a[1][0]a[1][1] a[2][0]a[2][1]a[0][0]a[0][1]

Each a[i] needs 4 bytes of storage as they are pointers

Each a[i][j] needs 1 byte of storage as they are characters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 15


	Multi-dimensional Arrays and Pointers

