ESC101N

Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1%t semester, 2010-11
Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/

@ Variables signify data that may be modified
o Name of a variable can contain letters, digits and underscore (-)
@ Example: i, y2k, big_name, bigger name_2

o Case-sensitive: camel, CAMEL and CaMeL are different

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 2/12

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore (_)
Example: i, y2k, big_name, bigger name_2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit

Example: 1d is not valid

Name can start with an underscore, but do not do so

Example: avoid valid names such as _bad

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 2/12

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore (_)
Example: i, y2k, big_name, bigger name_2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit

Example: 1d is not valid

Name can start with an underscore, but do not do so

Example: avoid valid names such as _bad

Certain keywords are special

They are reserved and cannot be used

Example: main, if

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 2/12

Types of variables

@ Each variable has a type that signifies the domain of values

’ Domain ‘ Type ‘
integer int, char
real double, float
character char
boolean int

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 3/12

Types of variables

@ Each variable has a type that signifies the domain of values

’ Domain ‘ Type ‘
integer int, char
real double, float
character char
boolean int

@ Initial values of variables are specified as constants of the same type
@ Examples:

e int i = 0;

e double d = 1.4;

@ char c = ’A’;

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 3/12

Types of variables

@ Each variable has a type that signifies the domain of values

’ Domain ‘ Type ‘
integer int, char
real double, float
character char
boolean int

@ Initial values of variables are specified as constants of the same type
@ Examples:
e int i = 0;
e double d = 1.4;
@ char ¢ = ’A’;
@ Types are not mathematically equivalent to domain
@ They capture only a subset
@ Real numbers of arbitrary precision cannot be represented
e double is more accurate than float
e 1/3is printed as 0.33333334326.. as a float, but 0.33333333333.. as a
double

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 3/12

There is no boolean or truth type in C
Integers are treated as booleans
Value 0 represents false

Any non-negative value (typically 1) represents true
Examples:
e (3 > 5) is printed as 0 whereas (3 < 5) is printed as 1

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 4/12

There is no boolean or truth type in C
Integers are treated as booleans
Value 0 represents false
Any non-negative value (typically 1) represents true
Examples:
e (3 > 5) is printed as 0 whereas (3 < 5) is printed as 1
Characters are special integers of much shorter size
8 bits are used
Only 256 characters can be represented
Unicode includes characters from all languages of the world
ASCII specifies a standard that maps characters to integers (between
0 and 255)
Examples:
e ’a’ is equivalent to 97, A’ to 65, 0’ to 48, >.’ to 46
e Look up ASCII chart for complete list
printf("'%d"", 'a');
printf(“'%c’'", 97);
printf(‘'%c’'', 353);

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 4/12

Input and output of variables

@ Correct type specification must be used
] Type \ Specification

int %#d
double %t
float pA
char %he

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N

Input and output of variables

@ Correct type specification must be used
] Type \Specification ‘

int %#d
double %t
float pA
char %he

@ scanf is for input
e Format: scanf (¢ ‘<specification>’’, &<name>);
o Examples:

e iisan int: scanf(‘‘%d’’, &i);

e cis a char: scanf(‘‘Yc’’, &c);

o dis a double: scanf (¢ ‘%f’’, &d);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 5/12

Input and output of variables

@ Correct type specification must be used
] Type \Specification ‘

int %#d
double %t
float pA
char %he
@ scanf is for input
e Format: scanf (¢ ‘<specification>’’, &<name>);
o Examples:
e iisan int: scanf(‘‘%d’’, &i);
e cis a char: scanf(‘‘%c’’, &c);
o dis a double: scanf (¢ ‘%f’’, &d);
@ printf is for output
o Format: printf (¢ ‘<specification>’’, <name>);
@ Examples:

e iisan int: printf(‘‘%d’’, i);
e cisa char: printf(‘‘%c’’, c);

o dis a double: printf(‘‘%f’’, d);
Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 5/12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid
@33/ 5=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid
@33 /5=6
©33Y% 5=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 7%5=3

@ -33 / 5=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

©337%5=3

e -33 / 5 = -6 (non-standard)

@ -33 Y% 5=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 7%5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0 / 5.0=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

©337%5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0/5.0=6.6

@ ’a’ + 2=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 7%5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0/5.0=6.6

e ’a’ +2="¢

@ ’a’ - 2=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 7%5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0/5.0=6.6

e ’a’ +2="¢

e ’a’ -2="_

@ A + 1’ =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 7%5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0/5.0=6.6

@ ’a’ +2="c

e ’a’ -2="_

@ ’A’ + 71’ =65+ 49 = 114 = 'r’ (avoid)

0’1’ x 2 =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Arithmetic operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

@33 /5=6

@33 % 5=3

e -33 / 5 = -6 (non-standard)

@ -33 % 5 = -3 (non-standard)

@ 33.0/5.0=6.6

@ ’a’ +2="c

e ’a’ -2="_

@ ’A’ + 71’ =65+ 49 = 114 = 'r’ (avoid)

@ ’1” x 2=49*2 =08 ="b" (avoid)

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 6 /12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@ 33 > b=

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ > b’ =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

[~ 7a) >)b) — O

@ ’a’ == 97 =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ > b’ =0

0 ’a’ == 97 =1

@ ’a’ == 353 =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ >’b>=0

0 ’a’ == 97 =1

@ ’a’ == 353=0

@ ’a’ == 97.0 =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ >’b>=0

0 ’a’ == 97 =1

@ ’a’ == 353=0

@ ’a’ ==97.0=1

® 96.0 == 97 =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ >’b>=0

0 ’a’ == 97 =1

@ ’a’ == 353=0

@ ’a’ ==97.0=1

@ 96.0 == 97=0

© 97.0 == 97 =

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Relational operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
> greater than yes yes yes
>= greater than or equal to | yes yes yes
< lesser than yes yes yes
<= lesser than or equal to | yes yes yes
== equal to yes yes yes
1= not equal to yes yes yes

@33>5=1

@ ’a’ >’b>=0

0 ’a’ == 97 =1

@ ’a’ == 353=0

@ ’a’ ==97.0=1

@ 96.0 == 97=0

@ 97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 7/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8 /12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8 /12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes

&& logical and | yes yes yes

|l logical or | yes yes yes
e !14=0
e 4.0 =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8 /12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ '14.0=0

4 && 5=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ !14.0=0

°©4 8 5=1

4.0 && 5.0 =

20101 8 /12

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ '14.0=0

o4 && 5=1

4.0 & 5.0=1

04 && 0=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ '14.0=0

o4 && 5=1

4.0 & 5.0=1

04 8&& 0=0

o4 || 0=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ '14.0=0

o4 && 5=1

4.0 && 5.0 =

04 8&& 0=0

o4 |l 0=1

e I’a’ =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

e !14=0

@ '14.0=0

4 && 5=

4.0 & 5.0=1

04 && 0=

o4 |l 0=1

e 1’a> =0

e ’\0’ =

20101 8 /12

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

o 14 =

@ '14.0=0

o4 && 5=1

4.0 & 5.0=1

04 8&& 0=0

o4 |l 0=1

e 1’a> =0

e ’\0’ =0

e ’'0’ =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

14 =0
14.0=0
4 && 5
4.0 && 5.0=1
4 && O
411l 0=1
1’a> =0

'\0’> =0

00 =1

a’ || ’\0’ =

I
[ay

Il
o

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 8/12

Logical or boolean operators

] Operator \ Meaning \ int \ double, float \ char ‘

! not yes yes yes
&& logical and | yes yes yes
|l logical or | yes yes yes

14 =0
14.0=0
4 && 5
4.0 && 5.0=1
4 && O
411l 0=1

1’a> =0

'\0’> =0

00 =1

’a’ || ’\0’ =1

I
[ay

Il
o

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 8/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12
@ 45 + +33 =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12
@ 45 + 433 =178

@ i = 33; it++;:

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12

@ 45 + +33 =178

@ i = 33; i++; : i becomes 34

@i =33; i——; :

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12

@ 45 + +33 =78

@ i = 33; i++; : i becomes 34

@ i =33; i-—; : i becomes 32

@ c ="’g’; ++c; :

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12

@ 45 + +33 =78

@ i = 33; i++; : i becomes 34

@ i =33; i-—; : i becomes 32

@ c = ’g’; ++c; : c becomes 'h’ (for ASCII standard)

@ec="g,; --c;:

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Unary operators

’ Operator ‘ Meaning ‘ int ‘ double, float ‘ char ‘
(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 | yes yes yes
- decrement by 1 | yes yes yes
= assignment yes yes yes

@ 45 + -33 =12

@ 45 + +33 =78

@ i = 33; i++; : i becomes 34

@ i =33; i-—; : i becomes 32

@ c = ’g’; ++c; : c becomes 'h’ (for ASCII standard)

@ c = "’g’; --c;: c becomes 'f" (for ASCIl standard)

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 9/12

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=14
o / evaluated earlier than + due to higher precedence

024 /6%2=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28
e / is of same precedence as * and order of evaluation is left to right

©24/6/2=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
124+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28

e / is of same precedence as * and order of evaluation is left to right

024/6/2=2
e / is evaluated from left to right
012-6-3=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
124+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28

e / is of same precedence as * and order of evaluation is left to right

024/6/2=2
e / is evaluated from left to right
012-6-3=3

e - is evaluated from left to right

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28
e / is of same precedence as * and order of evaluation is left to right
024/6/2=2
e / is evaluated from left to right
012-6-3=3
e - is evaluated from left to right

@ Brackets () are needed to enforce particular order (remember
BODMAS rule)

o (12+6) /3=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28
e / is of same precedence as * and order of evaluation is left to right
024/6/2=2
e / is evaluated from left to right
012-6-3=3
e - is evaluated from left to right

@ Brackets () are needed to enforce particular order (remember
BODMAS rule)
o (12+6)/3=6
024/ (6*2)=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

@ An expression is any legal combination of variables, constants and
operators
012+6/3=14
o / evaluated earlier than + due to higher precedence
024 /6*2=28
e / is of same precedence as * and order of evaluation is left to right
024/6/2=2
e / is evaluated from left to right
012-6-3=3
e - is evaluated from left to right

@ Brackets () are needed to enforce particular order (remember
BODMAS rule)
o (12+6)/3=6
024/ (6%2)=2
024 /(6/2) =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators
124+6/3=14

o / evaluated earlier than + due to higher precedence
24 /6*2=28

e / is of same precedence as * and order of evaluation is left to right
24/6/2=2

e / is evaluated from left to right
12-6-3=3

e - is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

e (12+6)/3=6
024 /(6*%2)=2
024/(6/2)=28
e 12-(6-3) =

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators
124+6/3=14

o / evaluated earlier than + due to higher precedence
24 /6*2=28

e / is of same precedence as * and order of evaluation is left to right
24/6/2=2

e / is evaluated from left to right
12-6-3=3

e - is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

o (12+6)/3=6
024/ (6%2)=2
©24/(6/2) =38
0 12-(6-3)=9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 10 / 12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(CC((-6) /3 *x (-5)) <8 |l (0> (B -16))

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(((((-6) /7 3) « (-5)) <8 Il (0> (B -6)))=1

o How did we decide?

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(((((-6) /7 3) « (-5)) <8 Il (0> (B -6)))=1

o How did we decide?

@ By using rules of operator precedence and associativity

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(((((-6) /7 3) « (-5)) <8 Il (0> (B -6)))=1

@ How did we decide?
@ By using rules of operator precedence and associativity

@ Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

e Operators having higher precedence are evaluated earlier
0 124+ 6/3isreally 12 4+ (6 / 3)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(((((-6) /7 3) « (-5)) <8 Il (0> (B -6)))=1

o How did we decide?

@ By using rules of operator precedence and associativity
@ Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated
e Operators having higher precedence are evaluated earlier
o 1246/ 3is really 12 + (6 / 3)
@ Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated
o If an operator is left-to-right associative, the leftmost instance of the

operator is evaluated first, and so on
e 12-6-3isreally (12-6)-3

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 | 11 /12

Evaluation of expressions

e-6/3%x-5<81]]0>5-6=
(((((-6) /7 3) « (-5)) <8 Il (0> (B -6)))=1

o How did we decide?

@ By using rules of operator precedence and associativity
@ Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated
e Operators having higher precedence are evaluated earlier
o 1246/ 3is really 12 + (6 / 3)
@ Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

o If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
e 12-6-3isreally (12-6)-3

@ It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N 2010 | 11 /12

Operator precedence and associativity

Unary operators: right-to-left
Arithmetic operators: left-to-right

Relational operators: left-to-right

Logical operators: left-to-right

Arnab Bhattacharya (arnabbG@iitk.ac.in) ESC101N

Operator precedence and associativity

@ Unary operators: right-to-left
@ Arithmetic operators: left-to-right
o Relational operators: left-to-right

o Logical operators: left-to-right

Operator \ Precedence \ Associativity

! ++ —— (unary)+ (unary)- Highest right-to-left
* /% left-to-right

+ - left-to-right

<<=>>= left-to-right

== 1= left-to-right

&& left-to-right

'l left-to-right

= Lowest right-to-left

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N

	Types

