
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 12

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/

Variables

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore ()

Example: i, y2k, big name, bigger name 2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit

Example: 1d is not valid

Name can start with an underscore, but do not do so

Example: avoid valid names such as bad

Certain keywords are special

They are reserved and cannot be used

Example: main, if

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 12

Variables

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore ()

Example: i, y2k, big name, bigger name 2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit

Example: 1d is not valid

Name can start with an underscore, but do not do so

Example: avoid valid names such as bad

Certain keywords are special

They are reserved and cannot be used

Example: main, if

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 12

Variables

Variables signify data that may be modified

Name of a variable can contain letters, digits and underscore ()

Example: i, y2k, big name, bigger name 2

Case-sensitive: camel, CAMEL and CaMeL are different

Name cannot start with a digit

Example: 1d is not valid

Name can start with an underscore, but do not do so

Example: avoid valid names such as bad

Certain keywords are special

They are reserved and cannot be used

Example: main, if

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 12

Types of variables

Each variable has a type that signifies the domain of values

Domain Type

integer int, char
real double, float

character char
boolean int

Initial values of variables are specified as constants of the same type
Examples:

int i = 0;
double d = 1.4;
char c = ’A’;

Types are not mathematically equivalent to domain

They capture only a subset
Real numbers of arbitrary precision cannot be represented

double is more accurate than float
1/3 is printed as 0.33333334326.. as a float, but 0.33333333333.. as a
double

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12

Types of variables

Each variable has a type that signifies the domain of values

Domain Type

integer int, char
real double, float

character char
boolean int

Initial values of variables are specified as constants of the same type
Examples:

int i = 0;
double d = 1.4;
char c = ’A’;

Types are not mathematically equivalent to domain

They capture only a subset
Real numbers of arbitrary precision cannot be represented

double is more accurate than float
1/3 is printed as 0.33333334326.. as a float, but 0.33333333333.. as a
double

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12

Types of variables

Each variable has a type that signifies the domain of values

Domain Type

integer int, char
real double, float

character char
boolean int

Initial values of variables are specified as constants of the same type
Examples:

int i = 0;
double d = 1.4;
char c = ’A’;

Types are not mathematically equivalent to domain

They capture only a subset
Real numbers of arbitrary precision cannot be represented

double is more accurate than float
1/3 is printed as 0.33333334326.. as a float, but 0.33333333333.. as a
double

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 12

More on types

There is no boolean or truth type in C
Integers are treated as booleans
Value 0 represents false
Any non-negative value (typically 1) represents true
Examples:

(3 > 5) is printed as 0 whereas (3 < 5) is printed as 1

Characters are special integers of much shorter size
8 bits are used
Only 256 characters can be represented
Unicode includes characters from all languages of the world
ASCII specifies a standard that maps characters to integers (between
0 and 255)
Examples:

’a’ is equivalent to 97, ’A’ to 65, ’0’ to 48, ’.’ to 46
Look up ASCII chart for complete list

p r i n t f (‘ ‘%d ’ ’ , ’ a ’) ;
p r i n t f (‘ ‘% c ’ ’ , 97) ;
p r i n t f (‘ ‘% c ’ ’ , 353) ;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 12

More on types

There is no boolean or truth type in C
Integers are treated as booleans
Value 0 represents false
Any non-negative value (typically 1) represents true
Examples:

(3 > 5) is printed as 0 whereas (3 < 5) is printed as 1

Characters are special integers of much shorter size
8 bits are used
Only 256 characters can be represented
Unicode includes characters from all languages of the world
ASCII specifies a standard that maps characters to integers (between
0 and 255)
Examples:

’a’ is equivalent to 97, ’A’ to 65, ’0’ to 48, ’.’ to 46
Look up ASCII chart for complete list

p r i n t f (‘ ‘%d ’ ’ , ’ a ’) ;
p r i n t f (‘ ‘% c ’ ’ , 97) ;
p r i n t f (‘ ‘% c ’ ’ , 353) ;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 12

Input and output of variables

Correct type specification must be used
Type Specification

int %d
double %f
float %f
char %c

scanf is for input
Format: scanf(‘‘<specification>’’, &<name>);
Examples:

i is an int: scanf(‘‘%d’’, &i);
c is a char: scanf(‘‘%c’’, &c);
d is a double: scanf(‘‘%f’’, &d);

printf is for output
Format: printf(‘‘<specification>’’, <name>);
Examples:

i is an int: printf(‘‘%d’’, i);
c is a char: printf(‘‘%c’’, c);
d is a double: printf(‘‘%f’’, d);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 12

Input and output of variables

Correct type specification must be used
Type Specification

int %d
double %f
float %f
char %c

scanf is for input
Format: scanf(‘‘<specification>’’, &<name>);
Examples:

i is an int: scanf(‘‘%d’’, &i);
c is a char: scanf(‘‘%c’’, &c);
d is a double: scanf(‘‘%f’’, &d);

printf is for output
Format: printf(‘‘<specification>’’, <name>);
Examples:

i is an int: printf(‘‘%d’’, i);
c is a char: printf(‘‘%c’’, c);
d is a double: printf(‘‘%f’’, d);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 12

Input and output of variables

Correct type specification must be used
Type Specification

int %d
double %f
float %f
char %c

scanf is for input
Format: scanf(‘‘<specification>’’, &<name>);
Examples:

i is an int: scanf(‘‘%d’’, &i);
c is a char: scanf(‘‘%c’’, &c);
d is a double: scanf(‘‘%f’’, &d);

printf is for output
Format: printf(‘‘<specification>’’, <name>);
Examples:

i is an int: printf(‘‘%d’’, i);
c is a char: printf(‘‘%c’’, c);
d is a double: printf(‘‘%f’’, d);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 =

6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 =

3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 =

-6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 =

-3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 =

6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 =

’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 =

’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ =

65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 =

49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Arithmetic operators

Operator Meaning int double, float char

+ addition yes yes restricted
- subtraction yes yes restricted
* multiplication yes yes best to avoid
/ division integer yes best to avoid
% modulus yes no best to avoid

33 / 5 = 6

33 % 5 = 3

-33 / 5 = -6 (non-standard)

-33 % 5 = -3 (non-standard)

33.0 / 5.0 = 6.6

’a’ + 2 = ’c’

’a’ - 2 = ’ ’

’A’ + ’1’ = 65 + 49 = 114 = ’r’ (avoid)

’1’ * 2 = 49 * 2 = 98 = ’b’ (avoid)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 =

1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ =

0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 =

1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 =

0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 =

1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 =

0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 =

1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Relational operators

Operator Meaning int double, float char

> greater than yes yes yes
>= greater than or equal to yes yes yes
< lesser than yes yes yes
<= lesser than or equal to yes yes yes
== equal to yes yes yes
!= not equal to yes yes yes

33 > 5 = 1

’a’ > ’b’ = 0

’a’ == 97 = 1

’a’ == 353 = 0

’a’ == 97.0 = 1

96.0 == 97 = 0

97.0 == 97 = 1 (avoid such automatic type conversions)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 =

0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 =

0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 =

1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 =

1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 =

0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 =

1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ =

0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ =

0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ =

1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ =

1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Logical or boolean operators

Operator Meaning int double, float char

! not yes yes yes
&& logical and yes yes yes
|| logical or yes yes yes

!4 = 0

!4.0 = 0

4 && 5 = 1

4.0 && 5.0 = 1

4 && 0 = 0

4 || 0 = 1

!’a’ = 0

’\0’ = 0

’0’ = 1

’a’ || ’\0’ = 1

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 =

12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 =

78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; :

i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; :

i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; :

c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; :

c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Unary operators

Operator Meaning int double, float char

(unary) + positive yes yes best to avoid
(unary) - negative yes yes best to avoid

++ increment by 1 yes yes yes
-- decrement by 1 yes yes yes
= assignment yes yes yes

45 + -33 = 12

45 + +33 = 78

i = 33; i++; : i becomes 34

i = 33; i--; : i becomes 32

c = ’g’; ++c; : c becomes ’h’ (for ASCII standard)

c = ’g’; --c; : c becomes ’f’ (for ASCII standard)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 =

14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 =

8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 =

2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 =

3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 =

6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) =

2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) =

8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) =

9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Expressions

An expression is any legal combination of variables, constants and
operators

12 + 6 / 3 = 14
/ evaluated earlier than + due to higher precedence

24 / 6 * 2 = 8
/ is of same precedence as * and order of evaluation is left to right

24 / 6 / 2 = 2
/ is evaluated from left to right

12 - 6 - 3 = 3
- is evaluated from left to right

Brackets () are needed to enforce particular order (remember
BODMAS rule)

(12 + 6) / 3 = 6
24 / (6 * 2) = 2
24 / (6 / 2) = 8
12 - (6 - 3) = 9

Best, of course, is to bracket up anyway to avoid confusion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =

(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6)))

= 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Evaluation of expressions

- 6 / 3 * - 5 < 8 || 0 > 5 - 6 =
(((((-6) / 3) * (-5)) < 8) || (0 > (5 - 6))) = 1

How did we decide?

By using rules of operator precedence and associativity

Precedence: among multiple operators, precedence rules guide the
order in which they will be evaluated

Operators having higher precedence are evaluated earlier
12 + 6 / 3 is really 12 + (6 / 3)

Associativity: among multiple instances of the same operator,
associativity rules guide the order in which they will be evaluated

If an operator is left-to-right associative, the leftmost instance of the
operator is evaluated first, and so on
12 - 6 - 3 is really (12 - 6) - 3

It is best to avoid using such expressions without bracketing

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 12

Operator precedence and associativity

Unary operators: right-to-left

Arithmetic operators: left-to-right

Relational operators: left-to-right

Logical operators: left-to-right

Operator Precedence Associativity

! ++ -- (unary)+ (unary)- Highest right-to-left
* / % left-to-right
+ - left-to-right

< <= > >= left-to-right
== != left-to-right
&& left-to-right
|| left-to-right
= Lowest right-to-left

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 12

Operator precedence and associativity

Unary operators: right-to-left

Arithmetic operators: left-to-right

Relational operators: left-to-right

Logical operators: left-to-right

Operator Precedence Associativity

! ++ -- (unary)+ (unary)- Highest right-to-left
* / % left-to-right
+ - left-to-right

< <= > >= left-to-right
== != left-to-right
&& left-to-right
|| left-to-right
= Lowest right-to-left

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 12

	Types

