
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 18

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/

Sizes of variables

The size of a variable can be found out using the sizeof function

printf(‘‘%d\n’’, sizeof(int));

In this machine
char: 1 byte
int: 4 bytes
float: 4 bytes
double: 8 bytes

Why are these required?

To know the limits
Type Minimum limit Maximum limit

char -128 127
int -2147483648 2147483647

Type Maximum precision Minimum limit Maximum limit

float 1.175494E-38 -3.403823E38 3.403823E38
double 2.225074E-308 -1.798693E308 1.798693E308

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 18

Sizes of variables

The size of a variable can be found out using the sizeof function

printf(‘‘%d\n’’, sizeof(int));

In this machine
char: 1 byte
int: 4 bytes
float: 4 bytes
double: 8 bytes

Why are these required?

To know the limits
Type Minimum limit Maximum limit

char -128 127
int -2147483648 2147483647

Type Maximum precision Minimum limit Maximum limit

float 1.175494E-38 -3.403823E38 3.403823E38
double 2.225074E-308 -1.798693E308 1.798693E308

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 18

Sizes of variables

#include <stdio.h>

int main()

{

char c;

printf("Size of character = %d bytes\n", sizeof(c));

int i;

printf("Size of int = %d bytes\n", sizeof(i));

float f;

printf("Size of float = %d bytes\n", sizeof(f));

double d;

printf("Size of double = %d bytes\n", sizeof(d));

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 18

Limits of variables

#include <stdio.h>

#include <limits.h> // for limits on integer types

#include <float.h> // for limits on floating -point types

void main()

{

printf("char stores values from %d to %d\n", CHAR_MIN , CHAR_MAX);

printf("\n");

printf("int stores values from %d to %d\n", INT_MIN , INT_MAX);

printf("\n");

printf("Smallest non -zero value of type float is %e\n", FLT_MIN);

printf("Largest value of type float is %e\n", FLT_MAX);

printf("Smallest value of type float is %e\n", -FLT_MAX);

printf("Smallest non -zero addition value of type float is %e\n", FLT_EPSILON);

printf("\n");

printf("Smallest non -zero value of type double is %e\n", DBL_MIN);

printf("Largest value of type double is %e\n", DBL_MAX);

printf("Smallest value of type double is %e\n", -DBL_MAX);

printf("Smallest non -zero addition value of type double is %e\n", DBL_EPSILON);

printf("\n");

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 18

Memory model

Memory is a list of bytes, each having a particular index called address

c

10

i

7 ...4

All variables are stored in memory

Depending on the size, contiguous bytes are occupied

The address of a variable is the first byte where it is stored

int i;

char c;

Address of i is 1

It occupies bytes 1 through 4

Address of c is 7

It only occupies byte 7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 18

Memory model

Memory is a list of bytes, each having a particular index called address

c

10

i

7 ...4

All variables are stored in memory

Depending on the size, contiguous bytes are occupied

The address of a variable is the first byte where it is stored

int i;

char c;

Address of i is 1

It occupies bytes 1 through 4

Address of c is 7

It only occupies byte 7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 18

Memory model

Memory is a list of bytes, each having a particular index called address

c

10

i

7 ...4

All variables are stored in memory

Depending on the size, contiguous bytes are occupied

The address of a variable is the first byte where it is stored

int i;

char c;

Address of i is 1

It occupies bytes 1 through 4

Address of c is 7

It only occupies byte 7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 18

Pointer

A pointer is a variable that stores the address of another variable

p...i

10 ... 49

The type of a pointer depends on the type of the variable it points to

A pointer is denoted by the symbol *

int i; // i is a variable of type int

int *p; // p is a pointer to int

The address of a variable is denoted by the symbol &

p = &i; // p is now 1 (in figure)

p stores the address of i, i.e., &i

*p denotes the content pointed by p, i.e., i

The value of a pointer can be printed using %u

The size of a pointer can be found using sizeof

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 18

Pointer

A pointer is a variable that stores the address of another variable

p...i

10 ... 49

The type of a pointer depends on the type of the variable it points to

A pointer is denoted by the symbol *

int i; // i is a variable of type int

int *p; // p is a pointer to int

The address of a variable is denoted by the symbol &

p = &i; // p is now 1 (in figure)

p stores the address of i, i.e., &i

*p denotes the content pointed by p, i.e., i

The value of a pointer can be printed using %u

The size of a pointer can be found using sizeof

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 18

Pointer

A pointer is a variable that stores the address of another variable

p...i

10 ... 49

The type of a pointer depends on the type of the variable it points to

A pointer is denoted by the symbol *

int i; // i is a variable of type int

int *p; // p is a pointer to int

The address of a variable is denoted by the symbol &

p = &i; // p is now 1 (in figure)

p stores the address of i, i.e., &i

*p denotes the content pointed by p, i.e., i

The value of a pointer can be printed using %u

The size of a pointer can be found using sizeof

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 18

Pointers

#include <stdio.h>

int main()

{

int i;

int *p;

printf("Size of pointer p is %d\n", sizeof(p));

i = 5;

p = &i;

printf("%d\t%d\t%u\t%u\n", i, (*p), &i, p);

*p = 7;

printf("%d\t%d\t%u\t%u\n", i, (*p), &i, p);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers

A pointer can be subtracted from another pointer
Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer

A pointer can be assigned a constant integer
It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations

Integers can be added to or subtracted from a pointer
Different from simple integer arithmetic
Adds (subtracts) in units of the size of the variable pointed to

int *p; // suppose p is now 1234

p++; // p is now 1234 + sizeof(int) = 1238 and not 1235

A pointer cannot be added to another pointer

Pointers cannot be multiplied or divided with integers or other
pointers
A pointer can be subtracted from another pointer

Useful in arrays

Pointers can be compared

A pointer can be assigned the address of a variable or another pointer
A pointer can be assigned a constant integer

It is best to avoid such assignments

A special value NULL can be assigned to a pointer
It signifies that the pointer points to nothing
It is equivalent to 0

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 18

Pointer operations I

#include <stdio.h>

int main()

{

int i, j, *p, *q;

printf("Assigning constant to a pointer\n");

p = 30564378; // warning , may result in segmentation fault

printf("%u\n", p);

// printf ("%d\n", (*p)); // may result in segmentation fault

printf("Assigning NULL to a pointer\n");

p = NULL;

printf("%u\n", p);

// printf ("%d\n", (*p)); // error

printf("Printing a pointer\n");

p = &i;

printf("%u\n", p);

printf("Incrementing a pointer\n");

p++;

printf("%u\t%u\n", p, (p - 3));

printf("Printing a pointer\n");

q = &j;

printf("%u\n", q);

//p = p * 2; // error

//q = q / p; // error

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 18

Pointer operations II

printf("Comparing two pointers\n");

printf("%d\t%d\n", (p < q), (p > q));

printf("Assigning address to pointers\n");

p = &i;

*p = 3;

q = &j;

*q = 9;

printf("%u\t%u\t%d\t%d\t%d\t%d\n", p, q, (*p), (*q), i, j);

printf("Assigning a pointer to another pointer\n");

p = q;

printf("%u\t%u\t%d\t%d\n", p, q, (*p), (*q));

*p = 4;

printf("%u\t%u\t%d\t%d\n", p, q, (*p), (*q));

printf("Subtracting a pointer from another pointer\n");

p = q + 3;

printf("%u\t%u\t%d\t%d\n", p, q, (p - q), (q - p));

printf("Incrementing the content of a pointer\n");

printf("%d\t%d\t%d\n", (*p), (*(p + 1)), (*p + 1));

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 18

Pointers and arrays

Array names are essentially pointers

int a[8];

Array elements are stored contiguously in memory

a is a pointer to the first element of the array, i.e., a[0]

*a is equivalent to a[0]

(a + i) is a pointer to a[i]

*(a + i) is equivalent to a[i]

Remember: (a + i) is actually a + i * sizeof(int)

When a[i] is used, compiler actually computes the address of (a +
i) and accesses the variable in that address

No error checking on array boundaries is done
Therefore, a[-2], a[12], etc. become legal as they are computed to
possibly valid memory addresses

Pointers can be assigned array names

int *p;

p = a;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 18

Pointers and arrays

Array names are essentially pointers

int a[8];

Array elements are stored contiguously in memory

a is a pointer to the first element of the array, i.e., a[0]

*a is equivalent to a[0]

(a + i) is a pointer to a[i]

*(a + i) is equivalent to a[i]

Remember: (a + i) is actually a + i * sizeof(int)
When a[i] is used, compiler actually computes the address of (a +
i) and accesses the variable in that address

No error checking on array boundaries is done
Therefore, a[-2], a[12], etc. become legal as they are computed to
possibly valid memory addresses

Pointers can be assigned array names

int *p;

p = a;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 18

Pointers and arrays

Array names are essentially pointers

int a[8];

Array elements are stored contiguously in memory

a is a pointer to the first element of the array, i.e., a[0]

*a is equivalent to a[0]

(a + i) is a pointer to a[i]

*(a + i) is equivalent to a[i]

Remember: (a + i) is actually a + i * sizeof(int)
When a[i] is used, compiler actually computes the address of (a +
i) and accesses the variable in that address

No error checking on array boundaries is done
Therefore, a[-2], a[12], etc. become legal as they are computed to
possibly valid memory addresses

Pointers can be assigned array names

int *p;

p = a;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 18

Passing pointers to functions

Pointers can be passed to functions just like any other variable
Function header must indicate that the parameters are pointers

int swap(int *pa , int *pb)

{

int t = *pa; *pa = *pb; *pb = t;

}

Important: If content of a pointer is changed inside the function, the
change is permanent, i.e., visible even outside the function
Reason: When a pointer is passed as an argument, a copy of the
pointer is available inside the function
However, the copy still points to the same address
Hence, changing the content of this address changes the content of
the original address
Similar to the situation when pointers p and q are same, i.e., p = q;
and *p is changed; *q changes automatically

Other rules of parameter passing are followed
Change in pointer itself is temporary

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 18

Passing pointers to functions

Pointers can be passed to functions just like any other variable
Function header must indicate that the parameters are pointers

int swap(int *pa , int *pb)

{

int t = *pa; *pa = *pb; *pb = t;

}

Important: If content of a pointer is changed inside the function, the
change is permanent, i.e., visible even outside the function
Reason: When a pointer is passed as an argument, a copy of the
pointer is available inside the function
However, the copy still points to the same address
Hence, changing the content of this address changes the content of
the original address
Similar to the situation when pointers p and q are same, i.e., p = q;
and *p is changed; *q changes automatically
Other rules of parameter passing are followed
Change in pointer itself is temporary

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 18

Swapping two integers

#include <stdio.h>

void swap(int *pa, int *pb)

{

int t = *pa;

*pa = *pb;

*pb = t;

}

int main()

{

int x = 3, y = 4;

int *a, *b;

printf("x = %d, y = %d\n", x, y);

// swap (&x, &y); // equivalent to the next three lines

a = &x;

b = &y;

swap(a, b);

printf("x = %d, y = %d\n", x, y);

}

pax

10 495

y ...

...

a pb... ...

...... 5325 29

b

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 13 / 18

scanf and printf

scanf requires passing a pointer

Reason: scanf requires to change the content of the variable to what
has been typed using the keyboard

Therefore, the address of the variable is passed

This is also why scanf requires & with the variable

scanf(‘‘%d’’, &i);

printf does not require passing a pointer

Reason: printf does not require to change the content of the
variable; it just needs to print it

Therefore, only the variable is passed

This is also why printf does not require & with the variable

printf(‘‘%d’’, i);

General rule: If a variable needs to be changed in a function, pass a
pointer that holds the address of the variable and change the contents
of the pointer

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 18

scanf and printf

scanf requires passing a pointer

Reason: scanf requires to change the content of the variable to what
has been typed using the keyboard

Therefore, the address of the variable is passed

This is also why scanf requires & with the variable

scanf(‘‘%d’’, &i);

printf does not require passing a pointer

Reason: printf does not require to change the content of the
variable; it just needs to print it

Therefore, only the variable is passed

This is also why printf does not require & with the variable

printf(‘‘%d’’, i);

General rule: If a variable needs to be changed in a function, pass a
pointer that holds the address of the variable and change the contents
of the pointer

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 18

scanf and printf

scanf requires passing a pointer

Reason: scanf requires to change the content of the variable to what
has been typed using the keyboard

Therefore, the address of the variable is passed

This is also why scanf requires & with the variable

scanf(‘‘%d’’, &i);

printf does not require passing a pointer

Reason: printf does not require to change the content of the
variable; it just needs to print it

Therefore, only the variable is passed

This is also why printf does not require & with the variable

printf(‘‘%d’’, i);

General rule: If a variable needs to be changed in a function, pass a
pointer that holds the address of the variable and change the contents
of the pointer

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 18

Passing arrays as pointers

Since array names are pointers, arrays can be passed where pointers
are required

To access the successive elements of the array, the pointer can be
incremented

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 15 / 18

Passing arrays as pointers

#include <stdio.h>

void read_array(int *p, int size)

{

int i = 0;

while (i < size)

{

scanf("%d", p);

p++;

i++;

}

}

void print_array(int *p, int size)

{

int i = 0;

while (i < size)

{

printf("%d\t", *p);

p++;

i++;

}

printf("\n");

}

int main()

{

int a[] = {3, -2, 7, 19};

print_array(a, 4);

read_array(a, 4);

print_array(a, 4);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 16 / 18

Passing pointers as arrays

Pointers can also be passed where arrays are required

The pointer must point to the correct array address

Pointer may point to the middle of the array, and operations may
start from there

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 17 / 18

Passing pointers as arrays

#include <stdio.h>

void read_pointer(int a[], int size)

{

int i = 0;

while (i < size)

{

scanf("%d", &a[i]);

i++;

}

}

void print_pointer(int a[], int size)

{

int i = 0;

while (i < size)

{

printf("%d\t", a[i]);

i++;

}

printf("\n");

}

int main()

{

int b[] = {3, -2, 7, 19};

int *p = b;

print_pointer(p, 4);

print_pointer(p + 1, 3);

read_pointer(p, 4);

print_pointer(p, 4);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 18 / 18

	Memory
	Pointers

