
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 11

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/


Strings

A string is an array of characters
Strings are not supported as separate data types
However, they have many specialities
A string can be declared in the following way:

char name [30];

Strings can be initialized in double quotes:

char city[] = ‘‘Kanpur ’’;

Strings can be initialized as array of characters:

char ct[] = {‘K’, ‘o’, ‘l’, ‘k’, ‘a’, ‘t’, ‘a’, ‘\0’};

A string is an array of characters terminated with the null character
‘\0’
So, array city contains ‘\0’ in the end and its size is 6 + 1 = 7
Since a string is an array of characters, it may be specified as a
pointer to character

char *str;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 11



String input and output

Use %s specification

char name [30];

scanf(‘‘%s’’, name);

printf(‘‘%s’’, name);

Reading will stop as soon as the first whitespace character (blank,
tab, return) is encountered

If size of array is larger, rest of the characters are undefined
If size of array is smaller, reading overlaps beyond the array boundary

A string is printed up to the null character

To read a string with blanks and tabs, use gets

char name [30];

gets(name);

gets function does not perform boundary checks and may thus
overflow and write characters in memory locations not intended

puts automatically appends a return character

puts(name);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 11



String input and output

Use %s specification

char name [30];

scanf(‘‘%s’’, name);

printf(‘‘%s’’, name);

Reading will stop as soon as the first whitespace character (blank,
tab, return) is encountered

If size of array is larger, rest of the characters are undefined
If size of array is smaller, reading overlaps beyond the array boundary

A string is printed up to the null character

To read a string with blanks and tabs, use gets

char name [30];

gets(name);

gets function does not perform boundary checks and may thus
overflow and write characters in memory locations not intended

puts automatically appends a return character

puts(name);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 11



String operations I

#include <stdio.h>

int main()

{

char city[] = "Kanpur";

char ct[] = {’K’, ’o’, ’l’, ’k’, ’a’, ’t’, ’a’};

char ctn[] = {’K’, ’o’, ’l’, ’\n’, ’k’, ’a’, ’t’, ’a’, ’\0’};

char sr[6] = "India";

char sm[7] = "Asia";

char sl[4] = "World";

char str1[4], str2[4], str3 [4];

char lstr [12];

printf("%s\n", city);

// printf ("%d\n", strlen(city));

printf("%s\n", ct);

// printf ("%d\n", strlen(ct));

printf("%s\n", ctn);

// printf ("%d\n", strlen(ctn));

printf("%s\n", sr);

printf("%s\n", sm);

printf("%s\n", sl);

scanf("%s", str1);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 11



String operations II

scanf("%s", str2);

scanf("%s", str3);

printf("%s\n", str1);

printf("%s\n", str2);

printf("%s\n", str3);

// gets(lstr);

// puts(lstr);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned
Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned
Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned
Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned
Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned

Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

Include the library string.h

strlen(s) returns the length of string s

It does not count the null character

strcpy(s, t) copies string t to s

s = t copies only the pointer, and not the string

strcat(s, t) appends string t to s

strcmp(s, t) returns the lexicographic comparison between strings
s and t

If they are equal, 0 is returned
If s is later than t, a positive integer is returned
If s is earlier than t, a negative integer is returned
Capital letters come earlier than small letters
No letter comes earlier than any other letter
Blank comes earlier than other letters

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 11



String operations

#include <stdio.h>

#include <string.h>

int main()

{

char str[] = "Kanpur";

char ca[] = {’K’, ’O’, ’L’, ’K’, ’A’, ’T’, ’A’, ’\0’};

char extra [30] = "e";

printf("%d\t%d\n", strlen(str), strlen(ca));

printf("%s\n", extra);

strcpy(extra , ca);

printf("%s\n", extra);

strcat(extra , str);

printf("%s\n", extra);

printf("%d\t%d\t%d\n", strcmp(str , ca), strcmp(ca, extra), strcmp(extra , str));

printf("%d\n", strcmp("a b", "ab"));

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 11



Pointer to character

Since the size of a string depends on the null character and not the
array size, a string is better handled as a pointer to character

Declaration of a string still requires the array specification

char name [30];

However, passing the string to a function is better done as a pointer
to character

void f(char *)

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 11



String copy using arrays

strcpy(s, t) copies string t to s

Array version

void strcpy(char s[], char t[])

{

int i = 0;

while (t[i] != ’\0’) // t has not finished

{

s[i] = t[i]; // copy

i++;

}

s[i] = ’\0’; // terminate s

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 11



String copy using arrays

strcpy(s, t) copies string t to s

Array version

void strcpy(char s[], char t[])

{

int i = 0;

while (t[i] != ’\0’) // t has not finished

{

s[i] = t[i]; // copy

i++;

}

s[i] = ’\0’; // terminate s

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 11



String copy using pointers

strcpy(s, t) copies string t to s

Pointer version

void strcpy(char *s, char *t)

{

while (*t != ’\0’) // t has not finished

{

*s = *t; // copy

s++; // point to next element

t++; // point to next element

}

*s = ’\0’; // terminate s

}

Really succinct version

void strcpy(char *s, char *t)

{

for (; *s = *t; s++, t++) // *s = *t is false if *t ==

’\0’

; // empty loop body

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 11



String copy using pointers

strcpy(s, t) copies string t to s
Pointer version

void strcpy(char *s, char *t)

{

while (*t != ’\0’) // t has not finished

{

*s = *t; // copy

s++; // point to next element

t++; // point to next element

}

*s = ’\0’; // terminate s

}

Really succinct version

void strcpy(char *s, char *t)

{

for (; *s = *t; s++, t++) // *s = *t is false if *t ==

’\0’

; // empty loop body

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 11



String copy using pointers

strcpy(s, t) copies string t to s
Pointer version

void strcpy(char *s, char *t)

{

while (*t != ’\0’) // t has not finished

{

*s = *t; // copy

s++; // point to next element

t++; // point to next element

}

*s = ’\0’; // terminate s

}

Really succinct version

void strcpy(char *s, char *t)

{

for (; *s = *t; s++, t++) // *s = *t is false if *t ==

’\0’

; // empty loop body

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 11



String comparison

strcmp(s, t) returns the comparison between strings s and t

Array version

int strcmp(char s[], char t[])

{

int i;

for (i = 0; s[i] == t[i]; i++) // traverse equal

elements

if (s[i] == ’\0’) // t[i] is also ’\0’

return 0; // only equal elements

return (s[i] - t[i]); // not just +1 or -1

}

Pointer version

int strcmp(char *s, char *t)

{

for (; *s == *t; s++, t++) // increment pointers

if (*s == ’\0’)

return 0;

return (*s - *t);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 11



String comparison

strcmp(s, t) returns the comparison between strings s and t
Array version

int strcmp(char s[], char t[])

{

int i;

for (i = 0; s[i] == t[i]; i++) // traverse equal

elements

if (s[i] == ’\0’) // t[i] is also ’\0’

return 0; // only equal elements

return (s[i] - t[i]); // not just +1 or -1

}

Pointer version

int strcmp(char *s, char *t)

{

for (; *s == *t; s++, t++) // increment pointers

if (*s == ’\0’)

return 0;

return (*s - *t);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 11



String comparison

strcmp(s, t) returns the comparison between strings s and t
Array version

int strcmp(char s[], char t[])

{

int i;

for (i = 0; s[i] == t[i]; i++) // traverse equal

elements

if (s[i] == ’\0’) // t[i] is also ’\0’

return 0; // only equal elements

return (s[i] - t[i]); // not just +1 or -1

}

Pointer version

int strcmp(char *s, char *t)

{

for (; *s == *t; s++, t++) // increment pointers

if (*s == ’\0’)

return 0;

return (*s - *t);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 11


	Character Arrays
	String Operations
	Character Pointer

