
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 14

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/

Structures

Structures are customized data types
It is declared using the keyword struct

struct Point

{

double x;

double y;

};

struct Point is a structure having two variables x and y
Variables in a structure are called members
A variable of the type structure can be defined using

struct Point p;

A structure type can be explicitly defined using typedef

typedef struct Point point;

point becomes an alias for struct Point
A structure variable can then simply be defined as

point s;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 14

Structures

Structures are customized data types
It is declared using the keyword struct

struct Point

{

double x;

double y;

};

struct Point is a structure having two variables x and y
Variables in a structure are called members
A variable of the type structure can be defined using

struct Point p;

A structure type can be explicitly defined using typedef

typedef struct Point point;

point becomes an alias for struct Point
A structure variable can then simply be defined as

point s;

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 14

Members

Structures can be initialized during declaration

point p = {4.0, -3.0};

By default, they are initialized to 0 (or ‘\0’)

Same as array

Its members can be explicitly assigned values

. notation to access members
structure variable.member name

p.x = 4.0;

p.y = -3.0;

Members behave just like ordinary variables

Size of a structure is the combined size of its members

Example: Size of point is 8 + 8 = 16 bytes

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 14

Functions returning structures

Since structures are variables, a function can return them

point copy_point(point s)

{

point p;

p.x = s.x;

p.y = s.y;

return p;

}

This can also be used to create structures

q = f(9.0, -3.0);

Copying can also be done simply by

q = p;

A structure is just a variable
Different from array

Structures cannot be compared

if (q == p) // error

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 14

Functions returning structures

Since structures are variables, a function can return them

point copy_point(point s)

{

point p;

p.x = s.x;

p.y = s.y;

return p;

}

This can also be used to create structures

q = f(9.0, -3.0);

Copying can also be done simply by

q = p;

A structure is just a variable
Different from array

Structures cannot be compared

if (q == p) // error

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 14

Functions returning structures

Since structures are variables, a function can return them

point copy_point(point s)

{

point p;

p.x = s.x;

p.y = s.y;

return p;

}

This can also be used to create structures

q = f(9.0, -3.0);

Copying can also be done simply by

q = p;

A structure is just a variable
Different from array

Structures cannot be compared

if (q == p) // error

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 14

Passing structures to functions

Since structures are variables, they can be passed to functions

Modifying the elements of a structure inside a function is temporary

void modify(point p, double c, double d)

{

p.x = c;

p.y = d;

}

The following code prints 5.0 and −3.0

point q = {5.0, -3.0};

modify(q, 9.0, 1.0);

printf(‘‘%lf %lf\n’’, q.x, q.y);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 14

Pointers to structures

A pointer to a structure can be defined

point *ptr , p;

ptr = &p;

When a pointer to structure is passed to a function, modifying the
elements of the structure inside the function becomes permanent

void modify(point *p, double c, double d)

{

p->x = c;

p->y = d;

}

The following code prints 9.0 and 1.0

point q = {5.0, -3.0};

modify (&q, 9.0, 1.0);

printf(‘‘%lf %lf\n’’, q.x, q.y);

-> notation to access members using pointers
structure pointer->member name
ptr->x is same as (*ptr).x

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 14

Pointers to structures

A pointer to a structure can be defined

point *ptr , p;

ptr = &p;

When a pointer to structure is passed to a function, modifying the
elements of the structure inside the function becomes permanent

void modify(point *p, double c, double d)

{

p->x = c;

p->y = d;

}

The following code prints 9.0 and 1.0

point q = {5.0, -3.0};

modify (&q, 9.0, 1.0);

printf(‘‘%lf %lf\n’’, q.x, q.y);

-> notation to access members using pointers
structure pointer->member name
ptr->x is same as (*ptr).x

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 14

Structure operations I

#include <stdio.h>

#include <math.h>

struct Point

{

double x;

double y;

}; // defining a structure

typedef struct Point point; // defining a new type using structure

point new_point(double c, double d) // structure as return value

{

point p;

p.x = c;

p.y = d;

return p;

}

double distance(point a, point b) // structure as parameter

{

double d = 0.0;

d = sqrt(pow(a.x - b.x, 2) + pow(a.y - b.y, 2));

return d;

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 14

Structure operations II

void modify_wrong(point p, double c, double d)

{

p.x = c; // modifying members inside function is temporary

p.y = d;

}

void modify_pointer(point *p, double c, double d)

{

p->x = c; // modifying members using structure pointer is permanent

p->y = d; // -> notation

}

int main()

{

struct Point p, q; // declaring using structure

point s; // declaring using type

point t = {9.0, -5.0}; // initializing during declaration

double d;

point *ptr;

printf("%lf %lf\n", p.x, p.y); // by default , values are 0

q.x = 4.0; // accessing or modifying the members in a structure

q.y = -3.0; // . notation

d = distance(p, q);

printf("Distance = %lf\n", d);

//p = {9.0 , -5.0}; // error

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 14

Structure operations III

// printf ("% lf %lf\n", p.x, p.y);

p = new_point (7.0, -1.0);

printf("%lf %lf\n", p.x, p.y);

modify_wrong(q, 7.0, -1.0);

printf("%lf %lf\n", q.x, q.y);

ptr = &p;

modify_pointer(ptr , 2.0, -5.0);

printf("%lf %lf\t%lf %lf\n", p.x, p.y, ptr ->x, ptr ->y);

printf("Size of p is %d, size of ptr is %d\n", sizeof(p), sizeof(ptr));

//if (q == p) // error

// printf (" Equal structures \n");

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 9 / 14

Nested structures

A structure can have another structure as its member

typedef struct Line

{

point p;

point q;

} line;

Note: typedef definitions can be combined – equivalent to

struct Line

{

point p;

point q;

};

typedef struct Line line;

Value x of point p of variable l of type line can be accessed as:
l.p.x

The . operator has left-to-right associativity

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 10 / 14

Array of structures

An array of structures can be simply defined as

point t[3];

Each individual structure is accessed as t[0], etc.

A member of a structure is accessed as t[i].x, etc.

All operations allowed on normal arrays are allowed on array of
structures

It is equivalent to a pointer to structure

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 11 / 14

Array of structures

#include <stdio.h>

typedef struct Point

{

double x;

double y;

} point;

int main()

{

point t[3];

int i;

for (i = 0; i < 3; i++)

{

t[i].x = i;

t[i].y = 2 * i;

printf("%lf %lf\n", t[i].x, t[i].y);

}

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 12 / 14

Pointer in a structure

A structure can have a pointer as its member

typedef struct Student

{

int roll;

char *name;

} student;

Declaring a variable of type student just declares the pointer name –
it does not allocate space for it

student s;

strcat(s.name , ‘‘.’’); // error

Memory for name has to be allocated explicitly using malloc

s.name = (char *) malloc (30 * sizeof(char));

10 14

student

...

80

name[0]roll name

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 13 / 14

Pointer in a structure

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

typedef struct Student

{

int roll;

char *name;

} student;

int main()

{

student s;

s.name = (char *) malloc (30 * sizeof(char));

scanf("%d%s", &s.roll , s.name);

printf("%d %s\n", s.roll , s.name);

strcat(s.name , "A");

printf("%d %s\n", s.roll , s.name);

free(s.name);

}

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 14 / 14

	Structures

