
ESC101N
Fundamentals of Computing

Arnab Bhattacharya
arnabb@iitk.ac.in

Indian Institute of Technology, Kanpur
http://www.iitk.ac.in/esc101/

1st semester, 2010-11

Tue, Wed, Fri 0800-0900 at L7

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 1 / 8

arnabb@iitk.ac.in
http://www.iitk.ac.in/esc101/


Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char

For assignments, value of right side is converted to type of left
Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34
Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12
Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information
Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char
For assignments, value of right side is converted to type of left

Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34
Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12
Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information
Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char
For assignments, value of right side is converted to type of left
Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34

Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12
Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information
Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char
For assignments, value of right side is converted to type of left
Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34
Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12

Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information
Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char
For assignments, value of right side is converted to type of left
Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34
Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12
Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information

Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Type conversion rules

For relational operators, lower type is promoted to higher type
Highest type is double, followed by float, then int and finally the
lowest type is char
For assignments, value of right side is converted to type of left
Code snippets like

double d = 12.56;

int i = d;

i = 34.56;

works!
Value of i is first 12, and then 34
Explicit type casting can be done by

double d = -12.56;

int i = (int)d;

Value of i gets truncated to -12
Conversion from higher type to lower type may lose information
Conversion from lower type to higher type should not lose information
Avoid

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 2 / 8



Inputting multiple characters: version 1

scanf(‘‘%c’’, &c) reads a single character
If multiple characters are need to be read

#include <stdio.h>

int main()

{

char a,b,c;

printf("Enter first character\n");

scanf("%c", &a);

printf("Enter second character\n");

scanf("%c", &b);

printf("Enter third character\n");

scanf("%c", &c);

printf("%c\n%c\n%c\n", a, b, c);

}

Does not work!
“Enter” is read as a character

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 8



Inputting multiple characters: version 1

scanf(‘‘%c’’, &c) reads a single character
If multiple characters are need to be read

#include <stdio.h>

int main()

{

char a,b,c;

printf("Enter first character\n");

scanf("%c", &a);

printf("Enter second character\n");

scanf("%c", &b);

printf("Enter third character\n");

scanf("%c", &c);

printf("%c\n%c\n%c\n", a, b, c);

}

Does not work!
“Enter” is read as a character

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 3 / 8



Inputting multiple characters: version 2

“Enter” is not printed

Can be printed as an integer

#include <stdio.h>

int main()

{

char a,b,c;

printf("Enter first character\n");

scanf("%c", &a);

printf("Enter second character\n");

scanf("%c", &b);

printf("Enter third character\n");

scanf("%c", &c);

printf("%d\n%d\n%d\n", a, b, c);

}

Note the automatic type conversion

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 4 / 8



Inputting multiple characters: version 3

Read all of them at one go, and press “Enter” only at the end

#include <stdio.h>

int main()

{

char a, b, c;

printf("Enter three characters\n");

scanf("%c", &a);

scanf("%c", &b);

scanf("%c", &c);

printf("%c\n%c\n%c\n", a, b, c);

printf("%d\n%d\n%d\n", a, b, c);

}

What if the number of characters to be read is variable?

A loop needs to be used

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 8



Inputting multiple characters: version 3

Read all of them at one go, and press “Enter” only at the end

#include <stdio.h>

int main()

{

char a, b, c;

printf("Enter three characters\n");

scanf("%c", &a);

scanf("%c", &b);

scanf("%c", &c);

printf("%c\n%c\n%c\n", a, b, c);

printf("%d\n%d\n%d\n", a, b, c);

}

What if the number of characters to be read is variable?

A loop needs to be used

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 5 / 8



Inputting variable number of characters

Read all of them at one go, and press “Enter” only at the end

#include <stdio.h>

int main()

{

int i, n;

char c;

printf("Enter the number of characters\n");

scanf("%d", &n);

for (i = 0; i < n; i++)

{

scanf("%c", &c);

printf("%c\n", c);

printf("%d\n", c);

}

}

scanf requires “Enter” before it can read

Typed characters are remembered as input

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 8



Inputting variable number of characters

Read all of them at one go, and press “Enter” only at the end

#include <stdio.h>

int main()

{

int i, n;

char c;

printf("Enter the number of characters\n");

scanf("%d", &n);

for (i = 0; i < n; i++)

{

scanf("%c", &c);

printf("%c\n", c);

printf("%d\n", c);

}

}

scanf requires “Enter” before it can read

Typed characters are remembered as input

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 6 / 8



Using getchar()

getchar() reads a single character

#include <stdio.h>

int main()

{

int i = 0;

char c;

while ((c = getchar ()) != EOF) // Stop input with

Ctrl -D

{

printf("%c\n", c);

i++;

}

printf("Number of characters input is %d\n", i);

}

Number of characters include “Enter”

EOF is a special value to indicate end of input

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 8



Using getchar()

getchar() reads a single character

#include <stdio.h>

int main()

{

int i = 0;

char c;

while ((c = getchar ()) != EOF) // Stop input with

Ctrl -D

{

printf("%c\n", c);

i++;

}

printf("Number of characters input is %d\n", i);

}

Number of characters include “Enter”

EOF is a special value to indicate end of input

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 7 / 8



printf special characters

Character Interpretation

\a Bell
\b Backspace
\n New line
\t Tab
\0 Null character
\’ Single quote
\’’ Double quote
\\ Backslash

putchar(c) prints the character c

char c = ’\t’;

putchar(c);

Arnab Bhattacharya (arnabb@iitk.ac.in) ESC101N 2010 I 8 / 8


	Type conversion
	Input and output

