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This technical report derives the closed-form signal to interference ratio (SIR) for the uplink

of a single-cell multi-user massive MIMO-FBMC system in the presence of a carrier frequency

offset (CFO) and perfect channel state information (CSI) with the zero-forcing (ZF) receiver

employed at the base station (BS). Numerical results are presented to compare the SIR of FBMC

and OFDM-based massive MIMO systems in the presence of CFO.

Let εu represent the normalized CFO for the uth user in the cell. Similar to (3) of the

manuscript, the signal received at the nth BS antenna in the presence of CFO, with the noise

neglected, can be obtained as

yncfo[l] =
U∑
u=1

(
su[l] ∗ gn,u[l]

)
ej2πεul/M , for 1 ≤ n ≤ N. (1)

Employing (1) and (2) from the manuscript, the expression for yncfo[l] can be expanded as

yncfo[l] =
U∑
u=1

Lh−1∑
i=0

gn,u[i]
M−1∑
m=0

∑
k∈Z

dum,kp
[
l − i− kM/2

]
ej2πm(l−i)/Mejφm,kej2πεul/M . (2)

As shown in (4) in the manuscript, we have p
[
l − i − kM/2

]
≈ p

[
l − kM/2

]
for i ∈ [1 Lh].

Thus, yncfo[l] above can be simplified to

yncfo[l] =
U∑
u=1

Gn,u
m

M−1∑
m=0

∑
k∈Z

dum,kp
[
l − kM/2

]
ej2πml/Mejφm,kej2πεul/M , (3)

where the channel’s frequency response (CFR) Gn,u
m̄ at the mth subcarrier is determined as

Gn,u
m =

∑L−1
l=0 g

n,u[l]e−j2πml/M . As described in the paragraph below (3) of the manuscript, the

demodulated signal ỹn
m̄,k̄

on the nth BS antenna at subcarrier m̄ and symbol time k̄ is obtained
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as ỹn
m̄,k̄

=
∑+∞

l=−∞ y
n
cfo[l]χ

∗
m̄,k̄

[l]. Substituting χm̄,k̄[l] from (2) of the manuscript and yncfo[l] from

(3), ỹn
m̄,k̄

can be expanded as

ỹnm̄,k̄ =
U∑
u=1

Gn,u
m

M−1∑
m=0

∑
k∈Z

dum,ke
j(φm,k−φm̄,k̄)λm,k

m̄,k̄
(εu), (4)

where

λm,k
m̄,k̄

(εu) =
∞∑

l=−∞

p
[
l − kM/2

]
p
[
l − k̄M/2

]
ej2π(m−m̄)l/Mej2πεul/M . (5)

Substituting l = q + (k+k̄)M
4

in the expression for λm,n
m̄,k̄

(εu) in (5), one obtains

λm,k
m̄,k̄

(εu) = ejπ(m−m̄)(k+k̄)/2ejπεu(k+k̄)/2

∞∑
q=−∞

p
[
q +

(k̄ − k)M

4

]
p
[
q − (k̄ − k)M

4

]
ej2π
(

(m−m̄)+εu

)
q/M

= ejπ(m−m̄)(k+k̄)/2ejπεu(k+k̄)/2Ap

(
(k̄ − k)M

2
, (m− m̄) + εu

)
, (6)

where Ap (M, ν0), termed as the discrete ambiguity function, is defined as

Ap (M, ν0) =
∞∑

q=−∞

p
[
q +

M

2

]
p∗
[
q − M

2

]
ej2πν0q/M .

The received signal ỹn
m̄,k̄

in (4) can be separated into the desired and interference component as

ỹnm̄,k̄ =
U∑
u=1

Gn,u
m̄

(
dum̄,k̄λ

m̄,k̄

m̄,k̄
(εu) + Jum̄,n̄(εu)

)
, (7)

where the interference component

Jum̄,k̄(εu) =
∑

(m,n)∈Ωm̄,k̄

dum,ke
j(φm,k−φm̄,k̄)λm,k

m̄,k̄
(εu). (8)

The above expression also exploited the fact that the dominant component of the interference

arises from the neighborhood Ωm̄,k̄ of the desired symbol at the index (m̄, k̄), and the CFR

Gn,u
m̄ can be assumed to be constant over this neighborhood. However, note that due to the

presence of a CFO, the interference is not a purely imaginary quantity. This is in contrast to

(6) of the manuscript, where the interference is a purely imaginary quantity in the absence of

synchronization errors. The quantity λm̄,k̄
m̄,k̄

(εu) in the signal component in (7) can be evaluated

using (6) as

λm̄,k̄
m̄,k̄

(εu) = ejπεuk̄Ap(0, εu).
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Substituting λm,k
m̄,k̄

(εu) from (6) together with the relationships m − m̄ = m0, k − k̄ = k0,

φm,k = π
2
(m+ k)− πmk, the expression for the interference in (8) can be recast as

Jum̄,k̄(εu) =
∑

(m
(0)
0 ,k

(0)
0 )∈Ωm̄,k̄

dum̄+m0,k̄+k0
ejπ(m0+k0−m0k0)/2e−jπm̄k0ejπεu(k0+2k̄)/2

Ap

(
−k0M

2
,m0 + εu

)
. (9)

In the above expression, the notation (m
(0)
0 , k

(0)
0 ) represents all the (m0, k0) points in the neigh-

borbood excluding (m0, k0) = (0, 0). For convenience, (7) can be written in a vectorial form

as

ỹcfo
m̄,k̄ = Gm̄d̃

cfo
m̄.k̄, (10)

where ỹcfo
m̄,k̄

= [ỹ1
m̄,k̄
, ỹ2
m̄,k̄
, . . . , ỹN

m̄,k̄
]T is the N × 1 received vector at the BS in the presence of

CFO, Gm̄ = Hm̄D
1/2 is the N × U CFR matrix. The U × 1 vector d̃cfo

m̄.k̄
comprises the data

and interference caused by the CFO. Assuming perfect CSI knowledge at the BS, the signal

after ZF processing at the BS is given as d̃cfo
m̄.k̄

= G†m̄ỹ
cfo
m̄,k̄

, where G†m̄ is the pseudo-inverse of

the CFR matrix Gm̄. The uth element of the vector d̃cfo
m̄.k̄

, which comprises both the signal and

interference components for the uth user, is given as

d̃u,cfo
m̄.k̄

= dum̄,k̄e
jπεuk̄Ap(0, εu) + Jum̄,k̄(εu). (11)

Exploiting the property that the transmitted OQAM symbols are real, the estimate of the symbol

du
m̄,k̄

for the uth user in the presence of CFO can be obtained as

d̂um̄,k̄ = <

{
d̃u,cfo
m̄.k̄

ejπεuk̄Ap(0, εu)

}
= dum̄,k̄ + J̃um̄,k̄(εu), (12)

where the real interference term J̃u
m̄,k̄

(εu) is given as

J̃um̄,k̄(εu) = <

{
Ju
m̄,k̄

(εu)

ejπεuk̄Ap(0, εu)

}
. (13)

Using (9), the interference term J̃u
m̄,k̄

(εu) can be evaluated as

J̃um̄,k̄(εu) =<

{
Ju
m̄,k̄
, (εu)

ejπεuk̄Ap(0, εu)

}
=

(
1

Ap(0, εu)

) ∑
(m

(0)
0 ,k

(0)
0 )∈Ωm̄,k̄

dum̄+m0,k̄+k0

cos
(π

2
(m0 + n0 −m0n0 + εun0)− πm̄n0

)
Ap

(
−k0M

2
,m0 + εu

)
, (14)
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where we have also exploited the fact that the ambiguity function Ap(m, ν0) is real [1]. Since

the OQAM symbols dum,k are zero mean i.i.d. with variance Pd, the variance of the interference

J̃u
m̄,k̄

(εu) above can be obtained as

E
[
|J̃um̄,k̄(εu)|

2
]

=

(
Pd

A2
p(0, εu)

) ∑
(m

(0)
0 ,k

(0)
0 )∈Ωm̄,k̄

cos2
(π

2
(m0 + n0 −m0n0 + εun0)

)

A2
p

(
−k0M

2
,m0 + εu

)
. (15)

Following the rules described in (10) of the manuscript, the QAM symbol after OQAM to

OQAM conversion is obtained from (12) as

ĉum̄,k̄ = cum̄,k̄ + ṽu,cfo
m̄,k̄

, (16)

where cu
m̄,k̄

= du
m̄,2k̄

+ jdu
m̄,2k̄+1

and ṽu,cfo
m̄,k̄

= J̃u
m̄,2k̄

+ jJ̃u
m̄,2k̄+1

when m̄ is even, and m̄, cu
m̄,k̄

=

du
m̄,2k̄+1

+ jdu
m̄,2k̄

and ṽu,cfo
m̄,k̄

= J̃u
m̄,2k̄+1

+ jJ̃u
m̄,2k̄

otherwise. Since the interference terms J̃u
m̄,2k̄

and

J̃u
m̄,2k̄+1

are zero-mean independent variable with equal variances, the term ṽu,cfo
m̄,k̄

after OQAM

to QAM conversion has the variance of E[|ṽu,cfo
m̄,k̄
|2] = 2E[|J̃u

m̄,k̄
|2]. Thus, from (16), the SIR at

the index (m̄, k̄) of the uth user in the presence CFO of can be expressed as

SIRu
m̄,k̄ =

E[|cu
m̄,k̄
|2]

E[|ṽu,cfo
m̄,k̄
|2]

(17)

=
2PdA

2
p(0, εu)∑

(m
(0)
0 ,k

(0)
0 )∈Ωm̄,k̄

2Pd cos2
(π

2
(m0 + n0 −m0n0 + εun0)

)
A2
p

(
−k0M

2
,m0 + εu

) .
It follows form [2], [3] that for the uth user, the variance of the interference caused by the CFO

in OFDM systems at subcarrier m̄ is given as

2Pd sin2(π(m̄+ εu))

M

M−1∑
m=0,m6=m̄

1

sin2
(
π(m+εu)

M

) . (18)

Thus, the SIR at subcarrier m̄ of the uth user for the OFDM-based massive MIMO systems in

the presence of CFO is given as

SIR
u

m̄ =
2Pd

2Pd sin2(π(m̄+ εu))

M

M−1∑
m=0,m 6=m̄

1

sin2
(
π(m+εu)

M

) .

Fig. 1 compares the SIR per user for both the FBMC and OFDM-based single-cell massive

MIMO systems as a function of the normalized CFO (normalized to the subcarrier spacing).
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Fig. 1: SIR comparison of OFDM and FBMC-based single-cell massive MIMO systems with the ZF receiver processing at the

BS in presence of CFO and perfect CSI. Number of BS antennas N = 64, number of users U = 8 and number of channel taps

L = 2.

It can be observed that when the CFO is close to zero, both the systems have similar SIR

performance. However, as the CFO increases, the FBMC waveform significantly outperforms

the OFDM waveform in terms of SIR since the latter experiences significant ICI due to the poor

frequency localization of the time domain rectangular pulse. On the other hand, FBMC systems

experience significantly lower ICI due to the well-localized pulse shape (both in frequency as

well as in time), which makes these systems robust against the CFO and well-suited for practical

scenarios with synchronization impairments.
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