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|. DATA FUSION FOR A KNOWN PARAMETERH WITH PERFECTCSI

This section derives the data fusion techniques for a knoavampeter scenario, for both the

massive array configurations.

A. Decision rule for the C-MIMO Architecture

Employing the two-step architecture, the combined ougauitc CV*!, under both the hy-
potheses, is distributed as

HO “Yc ~ CN(07 EC) )
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where the covariance matriXc = U§M2\IIFFH\IIH +C; is diagonal with thekth diagonal
element(Sc)wr = o} = o2 M| fil® +02 My

Adopting the NP criterion [1], which maximizes the probékpilof detection for a given
probability of false alarm, the log likelihood ratio (LLRggt for the binary hypothesis testing
problem in (1), can be formulated as
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Substituting the expression of in the above expression, followed by simplification, oneadrixt
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where# is the detection threshold. Notice thdk p(yc) is the weighted linear combination of
symmetric complex Gaussian random variables. Thus,Tc ke(yc) is also symmetric complex

Gaussian. The distribution dfc kp(yc), under both the hypotheses, can be expressed as
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Where gy oo e i, @Nd O’%C’KPIHO, O’%C’KPIHl are the means and variances corresponding to the

null and alternate hypotheses, respectively. The meap,»,, can be found as follows
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where the final expression follows from (1). Similarly, thean under the alternate hypothesis,

Hreol#:» CAN be determined as follows
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Now, the variance corresponding to null hypothesil?sC,KPmO, can be obtained as follows
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Similarly, along similar lines, it can be proved that.

C,KP

expressions into account, the probabilities of detectiBp) and false alarm Pr4), can be
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B. Decision rule for the D-MIMO Architecture

Similar to the C-MIMO scenario, a two-step architecture mpeyed at each FC. The
combined output at the BPU, under both the hypotheseswsltbe distribution
HO ‘YD CN(O, ED) s
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whereXp = o2 N7 U FFY ¥ + C, € CK*X is a diagonal matrix with théth diagonal entry
[Xolkk = 0b = 0o NG, | frl* + 02 Natby 5, The LLR test statisticTp ke(yp), for the known
parameter scenario, can be formulated as

p(YD|/H1)}
p(yo|Ho)
N [exp (—(yo—Na¥pFald) ' 55! (yo—Ny¥pFal))

Tcke(yp) =In [

exXp (—ygESIYD)

= R(yp Xp PoFa)
zf{: " <yamk,jkfkak )
or '
k=1 D,k
On substitutings3 , in the above expression, the test can be simplified as
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where ¥ is the detection threshold. The test statistickp(yp) follows the complex Gaussian

distribution under both the hypotheses, given as
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Where g, oo o el#: @N U%DKMHO’U%DKP\% are the means and variances corresponding to
the null and alternate hypotheses, respectively. Thesdeaterived along similar lines as that

of the C-MIMO architecture and can be expressed as
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[I. DATA FUSION FOR A KNOWN PARAMETER®# WITH IMPERFECT CSI

The mmWave massive MIMO channel is first estimated using tBé-Based approach,
followed by the determination of the decision rules for dimitted detection of the known

parameter.

A. Decision rule for the C-MIMO Architecture
The hybrid combined output at the FC follows the distribatio

Ho : }N’C ~ CN(O, C{,) y
} (14)
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where the covariance matric&s; and C; are diagonal, with theikth diagonal entries as
[Célkk = o2y and [Cylix = oF . Employing the above quantities, the test statistic for the

detection of a known parameter, with imperfect CSI, can h@essed as

Texir(yc) =y (Cy' — C#)S’c + 2%(}752{0;,16;]?39)- (15)

Determining a closed-form expression for the tBskip(yc) is significantly challenging. Further-

more, determining the distribution of the test thus obtdireemathematically intractable. Thus,

in the interest of practical implementation, it is essdradetermine simplistic detectors that



have a low complexity. The energy detector (ED), which rigaglieets these criteria, is ideally
suited in such systems. Hence, this is employed for diggtbgensing in a mmWave massive
MIMO WSN with imperfect CSI at the FC. The corresponding ttsttistic for the centralized

antenna topology is given as
K
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where~” is the detection threshold. The test statifficp(yc) under both the hypotheses can

be expressed as
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wherey3 and x3(\; 1) denote independent central and non-central chi-squaretbna variables
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, respectively, with two degrees of freedom.

M,k

For both the hypotheses, the test statistic in (17) can beoappated as the non-central chi-

squared random variable

Ho : Texip(ye) = Xi. . (Acke),
’ (18)
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where the quantitie& kr, lc ko andAc ke, Ackp are the degrees of freedom and the non-centrality
parameters for the null and alternate hypotheses resphctivhese can be obtained from the
first four cumulants oflc xp(yc) [2]. For the test statistic in (18), the expressionsiyf and

Pr4 can be obtained as
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B. Decision rule for the D-MIMO Architecture
The distribution of the hybrid combined output at BPU folkthe distribution
Ho:yp ~CN(0,Cy),
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where the covariance matric€s;, and C;, are diagonal, withkth diagonal entries aCy |, =
o3 and[Cylrr = o7 .. The ED for the data fusion of a known parameter, with impzreSl|

and the D-MIMO configuration can be expressed as
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where 3 and x3(\; 1) denote independent central and non-central chi-squaretbna variables
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with non-centrality parametey;, ; = 2 , respectively, with two degrees of freedom.
The test statistic can be well-approximated as non-cecfisdquared random variable with «r
and lpkp degrees of freedom, and the non-centrality parametglig and A\p xp, under the
null and alternate hypotheses, respectively. The quastdan be computed using the first four
cumulants of the test statistic as shown in [2]. Th¢ and Pr, expressions for the test statistic

in (22) can be derived as
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