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Fact #1: Computer Systems

Processors and Computer Systems are becoming more and more
powerful

Faster and many core processors
High speed memory and disks
Large memory bandwidth
Low latency networks

In few years time a desktop will be able to deliver a tera-flop of
compute power
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Fact #2: Supercomputing Applications

Used in applications requiring very large compute time

Important applications:

Engineering simulations (FM, CFD, structures)
Biology (Genetics, cell structure, molecular biology)
Nuclear physics, high energy particle physics, astrophysics, weather
prediction, molecular dynamics
Drug design, medical industry, tomography

Financial services, data-mining, web services, data centers, search
engines
Entertainment industry, animation, gaming
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Systems and Applications

These applications require enormous compute power

The compute power is available

Where is the CHALLENGE/GAP?
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Challenge

The biggest challenge: how do we program these machines?

Solving these complex problems, and programming these architectures
require different methodology

Better algorithms, compilers, libraries, profilers, application tuners,
debuggers etc. have to be designed

Software systems (algorithms, compilers, libraries, debuggers) AND
programmers (mainly trained in sequential programming) are unable
to exploit the compute power
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Challenge

The largest user base is outside computer science domain

Engineers and scientists should not be spending their energy in
understanding machine architecture, concurrency and language issues

They want to solve their problems
They are domain experts and not system experts
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High Performance Systems

Power of supercomputers comes from

Hardware technology: faster processors and memories, more cache,
low latency between devices

Multilevel architectural parallelism

Pipeline out of order execution
Vector handles arrays with a single instruction

Parallel lot of processors each capable of executing an
independent instruction stream

VLIW handles many instructions in a single cycle
Clusters large number of processors on a very fast network

Multicore lot of processors on a single chip
Grid Cooperation of a large number of systems
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Sources and Types of Parallelism

Structured: identical tasks on different data sets

Unstructured: different data streams and different instructions

Algorithm level: appropriate algorithms and data structures

Programming:

Write sequential code and use compilers
Write sequential code and use parallel APIs (MPI, OpenMP etc.)

Use fine grain parallelism: basic block or statement
Use medium grain parallelism: loop level
Use coarse grain parallelism: independent modules/tasks

Specify parallelism in parallel languages

Expressing parallelism in programs

No good programming languages
Most applications are not multi threaded
Writing multi-threaded code increases software cost
Programmers are unable to exploit whatever little is available
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State of the Art

Current software technology is unable to handle all these issues

Most of the programming still happens in Fortran/C/C++ using
parallel APIs

Main directions of research
Design of concurrent languages (X10 of IBM)
Construction of tools to do software development

Profilers, code tuning, thread checkers, deadlock/race detection
Parallelizing compilers
Better message passing libraries

Development of mathematical libraries

Dusty decks problem
Conversion of large body of existing sequential programs developed
over last 45 years
Several billion lines of working code (almost debugged)
Manual conversion is not possible

Therefore, RESTRUCTURING COMPILERS ARE REQUIRED
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Amdahl’s Law

Determines speed up

α: fraction of code in scalar
1 − α: fraction of code which is parallelizable

1 operation per unit time in scalar unit
τ operations per unit time in parallel units

Speed-up = 1
α+1−α

τ

0 ≤ α ≤ 1 and τ ≥ 1
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Amdahl’s Law

Scalar component of the code is the limiting factor

Parallel code must be greater than 90% to achieve any significant
speedup

Most of the execution time is spent in small sections of code

concentrate on critical sections (loops)

Loop parallelization is the most beneficial

Automatic parallelization must focus on the loops
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Loop Optimization

Loop unrolling, jamming, splitting

Induction variable simplification

Loop interchange

Node splitting

Loop skewing

Conversion to parallel loops

Inspector Executor parallelization

Speculative parallelization

Use APIs like OpenMP, MPI, PVM, Cuda etc.

How does compiler perform these optimizations?
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Parallelization: Programmers vs. Compilers

Programmer Compiler
Speed Slow Extremely fast

Working Set Small Very large

Accuracy Makes mistakes Accurate

Effectiveness Good Poor

Preserves Functionality Implementation

Approach Experiment as much as
possible

Conservative

Can compilers become as good as programmers?

Source: Amarsinghe et al
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Class of Problems

Dense data and regular fetch patterns

Basic Linear Algebra Systems
Use loop optimizations

Sparse/dense data and irregular fetch patterns

N-body simulation, molecular dynamics, Charmm, Discover, Moldyn,
Spice, Dyna-3D, Pronto-3D, Gaussian, Dmol, Fidap
Inspector-executor model for parallelization
Speculative parallelization
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Compiler Structure
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Matrix Multiplication: version 1

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
c[i,j] += a[i,k] ∗ b[k,j]

endfor
endfor

endfor

n3 iteration

Each cell computation requires n
multiplications and n additions

Total n3 multiplications and
additions

Sequential execution time:
∼ 80 seconds
(for n=1500 on a dual core laptop)

Data Access Pattern

C A B

= X
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Matrix Multiplication: version 2

for i = 1 to n do
for k = 1 to n do

for j = 1 to n do
c[i,j] += a[i,k] ∗ b[k,j]

endfor
endfor

endfor

n3 iteration

Each row computation requires n2

multiplications and n2 additions

Total n3 multiplications and
additions

Sequential execution time:
∼ 26 seconds
(for n=1500 on a dual core laptop)

Data Access Pattern

C A B

= X

How do we know that version 2 computes the same result as version 1?
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Matrix Multiplication: version 3

omp set num threads(omp get num procs());
#pragma omp parallel for private(j,k)

for i = 1 to n do
for j = 1 to n do

for k = 1 to n do
c[i,j] += a[i,k] ∗ b[k,j]

endfor
endfor

endfor

n3 iteration

Each cell computation requires n
multiplications and n additions

Total n3 multiplications and
additions

Parallel execution time:
∼ 50 seconds
(for n=1500 on a dual core laptop)

Uses more than one processor!

How do we know that this version computes the same result as
version 1?

Compilers can easily transform version 1 of the program into version 2
and version 3 to improve performance

However, they need to do Data Dependence Analysis to establish
equivalence of the two versions
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Data Dependence Analysis: Example

for i = 1, n
a[i] = b[i] S1
c[i] = a[i] + b[i] S2
e[i] = c[i+1] S3
a[i] = i ∗ i S4

endfor

S1 writes into a[i] which is read by S2
in the same iteration

S3 reads from c[i+1] which is over
written by S2 in the next iteration

S1 writes into a[i] which is over written
by S4 in the same iteration

Flow dependence: When a variable is assigned value in one statement
and used in a subsequent statement

Anti dependence: When a variable is used in one statement and
reassigned in a subsequent statement

Output dependence: When a variable is assigned in one statement
and reassigned in a subsequent statement

Presence of dependence between two statements prevents
optimization
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Data Dependence Analysis

Consider a loop

for I = 1, n
X[ f(I) ] = ..... S1
...... = X[ g(I) ] S2

endfor

There is a dependence from S1 to S2 if there are instances I1 and I2
of I such that

1 ≤ I1 ≤ I2 ≤ N and f(I1) = g(I2)

there is an iteration I1 in which S1 writes into X, and a subsequent (or
the same) iteration I2 in which S2 reads from the same element of X

Sanjeev K Aggarwal Department of Computer Science and Engineering IIT Kanpur 208016INDIA (REACH Symposium 2010, IIT Kanpur)Automatic Parallelization of Programs October 10, 2010 22 / 35



Data Dependence Analysis

If f and g are general functions, then the problem is intractable.

If f and g are linear functions of loop indices then to test dependence
we need to find values of two integers I1 and I2 such that

1 ≤ I1 ≤ I2 ≤ N and a0 + a1I1 = b0 + b1I2

or

1 ≤ I1 ≤ I2 ≤ N and a1I1 − b1I2 = b0 − a0

These are called Linear Diophantine Equations

The equations have to be solved to do program optimization

IS THAT ALL?
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Techniques of Data Dependence Analysis

Reduces to integer programming problem

NP Complete

Exhaustive solutions can not be found

iteration space is just too large

Test equations and inequalities for existence of a solution

Techniques
GCD test for existence of an integer solution

could be outside the range

Banerjee’s test for existence of a solution in the range

could be a real solution

Omega test: the most powerful test based on Fourier-Motzkin method
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Limitations of Data Dependence Analysis

Can not work with in-exact data and symbolic data

Data may not be available at compile time

Loop iteration count may not be known at compile time

The iteration space may not be ‘well shaped’

Data access patterns may not be regular (may be very complex!)

Runtime optimization techniques are required

Inspector-Executor model
Speculative parallelization
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Irregular Access (MOLDYN Kernel)

for step = 1, HSTEP
for i = 1, num interactions

n1 = left[i]
n2 = right[i]
force = (input[n1] - input[n2])/4
forces[n1] = forces[n1] + force
forces[n2] = forces[n2] - force

endfor
endfor Source: http://gpgpu.org/tag/molecular-dynamics
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Inspector Executor Code

for iteration = 1 to n
for i = StartIndex to EndIndex

a[i] = b[i] + c[ia[i]]
endfor

endfor

//inspector phase

for i = StartIndex to EndIndex
a[i] = b[i] + c.inspect(ia[i])

endfor

//create the communication schedule

c.schedule()

for iteration = 1 to n
//fetch remote values according

//to the communication schedule

c.fetch()
for i = StartIndex to EndIndex

a[i] = b[i] + c.execute(ia[i])
endfor

endfor
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Speculative Parallelization

Execute loop as a parallel loop

Keep track of memory references during execution

Test for data dependence

If there are dependencies then re-execute the loop sequentially

LRPD (Lazy Privatizing Doall extended for Reduction validation)

Improved LRPD with fewer roll backs
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Partially Parallel Loop: Example

for i = 1, 8
z = A[K[i]]
A[L[i]] = z + C[i]

endfor

K[1:8] = [1,2,3,1,4,2,1,1]
L[1:8] = [4,5,5,4,3,5,3,3]

iter 1 2 3 4 5 6 7 8

A[]

1 R R R R

2 R R

3 R W W W

4 W W R

5 W W W

Iterations before the first data dependence are correct and committed.

Re-apply the LRPD test on the remaining iterations.

Source: Rauchwerger et al
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OpenMP (Open Multi-Processing)

An application programming interface (API)

Supports multi-platform shared memory multiprocessing programming

C/C++ and Fortran on many architectures, including Unix and
Microsoft Windows platforms.

Consists of a set of compiler directives, library routines, and
environment variables that influence run-time behavior

Reference: www.openmp.org
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State of the Art

Programmers use high level languages and APIs like OpenMP,
Pthreads, Window threads, Mutex, Cuda etc. to write parallel
programs

GPUs are becoming main stream processors for HPC

The programmer must have a deep knowledge of concurrency to
program these machines

We are reaching (have already reached?) an era where programmers
can not write effective parallel programs without understanding
machines and concurrency

Research compilers have become powerful

can achieve performance close to hand coded parallel programs
Input of programmer is critical to the compiler performance
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The First Compiler

Fortran (Formula Translation) compiler project 1954-1957

Considered to be one of the ten most influential developments in the
history of computing
Nobody believed John Backus when he started the project!!

Prior to Fortran:

Programming was largely done in assembly/machine language
Productivity was low
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Reasons of Success of Fortran

End-users were not ignored

A mathematical formula could easily be translated into a program
Productivity was very high, code maintenance was easy
Quality of generated code was very high

Adoption: about 70-80% programmers were using Fortran within an
year

Side effects: enormous impact on programming languages and
computer science

Started a new field of research in computer science
lead to enormous amount of theoretical work - lexical analysis, parsing,
optimization, structured programming, code generation, error recovery
etc.
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Early Work in Parallelizing Compilers

Vectorizing compilers (1970s)

Researchers at UIUC and Rice university have done pioneering work
starting in 80s

First landmark paper appeared in 1987 in TOPLAS

High quality compilers are available from PGI, Intel, Fujitsu etc.

Research Compilers are far ahead of production quality compilers

Grand Challenge Problem: Can Fortran experiment be repeated for
Parallelizing compilers?
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Thank you for your attention

Questions?
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