

Water – Pure/Impure and Contaminated/Polluted

- Water gains chemical characteristics of aesthetic, health, biological and economic importance by dissolving and suspending materials.
- The type, magnitude, and interactions of these materials determine whether water will have taste, odor, or in general potable or not, and whether it will be corrosive, or acceptable or harmful for a particular use, etc.

Note: The oxygen end of the water molecule is attracted to positive ions and the hydrogen end to negative ions. The ability of water to dissolve ions accounts for the presence of inorganic constituents in natural waters. The behaviour of ions in solution, however, is a complex subject.

Water - Origin and Sources of Impurities

Origin: Atmosphere

Ionic and Dissolved

Positive ions

Hydrogen (H⁺) B

Bicarbonate (HCO₃⁻) Chloride (Cl⁻) Sulfate (SO₄⁻²)

Negative ions

Gases

Carbon dioxide (CO₂) Nitrogen (N₂) Oxygen (O₂) Sulfur dioxide (SO₂)

Suspended Dust, pollen

Water - Important Chemical and Biological Impurities

Origin: Contact of Water with Soils, Rocks and Minerals

Ionic and Dissolved

Positive ions
Calcium (Ca ⁺²)
Iron (Fe ⁺²)
Magnesium (Mg ⁺²)
Potassium (K ⁺)
Sodium (Na ⁺)
Zinc (Zn ⁺²)

Negative ions Bicarbonate (HCO_3^{-2}) Carbonate (CO_3^{-2}) Chloride (CI^{-}) Fluoride (F^{-}) Nitrate (NO_3^{-}) Phosphate (PO_4^{-3}) Hydroxide (OH^{-}) Borates ($H_2BO_3^{-}$) Silicates (H_3SIO_4) Sulfate (SO_4^{-2})

Suspended

Clay, silt, sand and other inorganic soils Colloidal

Clay Silica Ferric oxide Aluminum oxide Magnesium dioxide

Gases Carbon dioxide (CO₂)

Water – Origin and Sources of Impurities

Origin: Living organisms in the environment

Colloidal Bacteria, algae, viruses, etc.

Suspended

Algae, diatoms, minute animals, fish, etc.

Gases

Ammonia (NH₃) Carbon dioxide (CO₂) Methane (CH₄)

	Origin: Municipal, human activity	industrial, and a	gricultural sources and othe	r
	Ionic and Dissolved		Colloidal	
	Positive ions	Negative ions	Inorganic and organic solids,	
	Inorganic ions, including a verity of heavy metals	Inorganic ions, organic molecules, color	organic compound, bacteria, worms, viruses	
	Suspended Clay, silt, grit, and other inorganic solid; organic compounds; oil; corrosion products; etc.		Gases]
			Chloride (Cl ₂) Sulfur dioxide (SO ₂)	

Sources of Bicarbonates, Sulfates, and Chlorides of Calcium, Magnesium, and Sodium Found in Natural Waters

Constituent	Source
Calcium Bicarbonate Ca(HCO ₃) ₂	Dissolution of limestone, marble, chalk, calcite, dolomite, and other minerals containing calcium carbonate
Magnesium Bicarbonate Mg(HCO ₃) ₂	Dissolution of magnesite, dolomite and dolomitic limestone, and other minerals containing magnesium carbonate
Sodium Bicarbonate Na(HCO ₃) ₂	White salt commonly known as baking soda, typically a manufactured product; also present in some natural waters
Calcium Sulfate CaSO ₄	Minerals such as gypsum, alabaster, and selenite

Sources of Bicarbonates, Sulfates, and Chlorides of Calcium, Magnesium, and Sodium Found in Natural Waters

Constituent	Source		
Magnesium Sulfate MgSO ₄	Heptahydrate from $(MgSO_4 . 7H_2O)$ commonly known as Epsom salt or when found in the salt beds or mines, as epsomite; monohydrate from $(MgSO_4 H_2O)$ occurs in a verity of minerals as a double salt with potassium chloride, potassium sulfate, etc.		
Sodium Sulfate Na ₂ SO ₄	Salt lakes, salt beds, caverns, etc., decahydrate from $(Na_2SO_4 $. 10H ₂ O) is known as Glauber's salt		
Calcium Chloride CaCl ₂	Natural brines, salt beds, etc., and a by product of the chemical industry		
Magnesium Chloride MgCl ₂	Anhydrous forms found in natural brines, salt beds, etc.		
Sodium Chloride NaCl	Salt beds, Salt lakes, connate waters, other natural brine		

Water or Aqueous Systems

Solid Dispersed phase can be classified into three groups

Soluble or Dissolved (Solution or Molecular Dispersion)

- Size < 10⁻⁹ m (1 nm)
- Molecules or atoms
- Optically non- resolvable
- Stable Dispersed Phase

Colloidal (Colloidal Suspension)

- Size: I -500 nm
- Ultra microscopically resolvable
- > Electron microscope size < 0.5 μ m
- Microscopically resolvable Size: 0.5 – 20 µm
- Stable Dispersed Phase

Coarse (Coarse Suspension)

- Size > 20 µm
- Can be seen
- Can be easily separated/filtered
- Unstable Dispersed Phase or Unstable Dispersion

Dispersed phase can't be separated from dispersion phase easily, say be settling, filtration, etc.