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A general unified theory of field (van der Waals, electric, etc.)-induced surface instabilities in thin viscoelastic films
that accounts for a destabilizing field and stabilizing effects of elastic strain and surface energy is presented. The present
theory seamlessly covers the instability and its different regimes in films ranging from elastic to viscous, from adhesive
(confined) to wetting (free surface), and from short- to long-wave instabilities. The critical conditions for the onset of
instability are found to be strongly dependent on elastic properties such as the shear modulus of the film, but the
dominant wavelength is strikingly independent of the film rheology. Different regimes based on a nondimensional
parameter (γ/μh) are uncovered, where γ is the surface energy, μ is the elastic shear modulus, and h is the film thickness.
A short-wave, elasticlike response withwavelength λ≈ 2.96h is obtained for γ/μh<0.1, whereas longwaves that depend
nonlinearly on the field strength and surface energy are obtained for γ/μh > 1. Owing to their small critical thickness,
wetting films destabilized by intermolecular forces always display long-wave instability regardless of their viscoelasti-
city. Furthermore, our numerical simulations based on energy minimization for unstable wetting elastic films show the
formation of islands for ultrathin films and amorphological phase transition to holes embedded in the film for relatively
thicker films. Unlike viscous films, however, unstable elastic films do not display a unique dominant wavelength but a
bimodal distribution of wavelengths.

Introduction

Mesomechanics of thin viscous1-34 and elastic films35-56 has
generated widespread interest because of their scientific and
technological contents ranging from wetting-dewetting and

adhesion-debonding to opto-electronic coatings and structures.
Mesomechanical considerations are important both in producing
a stable thin film and in controlled destruction to engineer desired
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mesopatterns. We develop here a unified theory of stability for
viscoelastic films, for which we will use the following nomencla-
ture to refer to different thin film situations of experimental
interest. A “dewetting film or wetting film or free film” will refer
to a viscoelastic filmwith a free surface that is supported ona rigid
solid substrate without slip. An “adhesive film or confined film”
refers to the situation of a viscoelastic film confined between two
solid surfaces, bonded without any slip to its substrate and
confined by a field (van der Waals or electric) originating from
another surface in its vicinity. Figure 1 displays a schematic of
these two situations. The major difference between the two
systems is that in an unstable (de)wetting film the destabilizing
intersurface interactions grow stronger with a reduction in the
film thickness but so do stabilizing factors such as the surface
tension and elasticity. In a confined film, the film thickness usually
plays a minor role in determining the destabilizing force, which
becomes stronger with increasing external field intensity (e.g., by
the increased proximity of the film surface to the confining surface
or contactor).

The mesomechanics of thin films has evolved basically along
two distinct routes;a purely viscous film supported on a solid
substrate (a special case of the free film, the so-calledwetting film)
and a soft, purely elastic film sandwiched between two substrates
(a special case of the adhesive film). Ultrathin (<100 nm) liquid
films (usually polymeric melts) dewet spontaneously by a long
wave-instability (wavelength . thickness), the wavelength and
thickness scaling of which seem to be in agreement with predic-
tions of a purely viscous model, notwithstanding the elasticity
polymeric melts displayed.3-14,16-34 Furthermore, the wave-
length of instability in this so-called spinodal dewetting depends
strongly on the intermolecular potential and the surface tension.
Elastic thin polystyrene films (PS)36 as well as ultrathin (<3 nm)57,58

solid free films have also been observed to undergo dewetting and
roughening by long-wave instability, as do weakly elastic free
liquid-crystal films.59 Some PS films prepared by varying mole-
cular weight60,61 exhibit a critical thickness below which instabi-
lity ismanifested. Soft viscoelastic free filmsmay thus also display
a similar critical thickness (or critical shear modulus), which is in
contrast to purely viscous films that are theoretically shown to be
unconditionally unstable for a monotonically decaying disjoining

pressure (such as the long-range van der Waals attraction). The
observations regarding the roughening of elastic free films are
theoretically not well understood. This observation is even more
surprising considering that micrometer-sized or even thicker,
purely elastic adhesive films spontaneously develop a short-wave
instability (wavelength ∼ thickness) during the process of ad-
hesion37-53 or the imposition of an electric field.54-56 The initial
formation of interfacial cavities manifests as microscopic bubbles
or bridges between the substrates as they are pulled apart to
debond. Even more surprising is the fact that the wavelength in
this case is independent of the surface tension and the inter-
molecular potential (between the contacting substrate and the
film surface) and is thus independent of the surface energies of the
contactor and the film!37-56

As abrief summary, both the existing observations and theories
suggest that ultrathin free films dewet by a long-wave instability
and their wavelength depends exclusively on the surface tension
force and the interactions between the film and the substrate,
whereas thicker, purely elastic adhesive films debond by a short-
wave instability that is completely independent of the surface
tension anddetails of the intersurface interactions!The purpose of
this article is to develop a unified mesomechanical understanding
of these two apparently unrelated phenomena and establish
conditions under which one or the other is manifested. There
are some recent theoretical studies on electric-field-induced in-
stabilities in liquidlike viscoelastic films62,63 and solid films.64

However, a general theory of viscoelastic thin films that seam-
lessly encompasses all of the limits in the presence of a generic
force field has never been studied. In this article, we carry out a
linear stability analysis of a linear viscoelastic thin film sub-
jected to an arbitrary force field and present some simulations
for purely elastic films because simulations for purely viscous
ultrathin films have already been extensively reported in the
literature.3,5,6,9-11,13,14,16,18,19,21-28,32 Such an approachwill allow
a unified understanding of thin film instabilities in a variety of
contexts, including different regimes of instability and the transi-
tions among them as well as the roles of film rheology, thickness,
surface energy, and the destabilizing force field on the length scale
and dynamics of instability in both free and adhesive films.

Theory

Schematic diagrams in Figure 1A,B show a viscoelastic film of
thickness h0 undergoing adhesion and dewetting, respectively. On
the approach of a contactor (Figure 1A), the adhesive film
deforms under the influence of the intermolecular forces.37-53

In contrast, a thin film can dewet because of the excess inter-
molecular interactions with its substrate (Figure 1B).1-34 The
dynamics of thin films (Figure 1) can be described by the
governing equations of motion, neglecting gravitational and
inertial forces,

r! 3
hh
σ ¼ 0 ð1Þ

where
hh
σ is the stress tensor. As is customary in thin filmdynamics,

the inertial effects are neglected1-19 because the films considered
are thin (<1000 μm) in the case of a confined film and ultrathin
(<100 nm) in the case of a wetting film destabilized by van der

Figure 1. (A) Incompressible viscoelastic filmwithmean thickness
h0 bonded rigidly to a substrate and subjected to attractive inter-
actions from a contactor plate held a distance d from the unde-
formed film surface. This is the case for an adhesive film. (B)
Wetting, incompressible viscoelastic film with parameters h0, μ,
and η resting on a substrate and subjected to excess attractive
interactions arising from the small thickness of the film.
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Waals interaction. Furthermore, in the case of elastic films, the
timescale, when it is of experimental interest, is much longer
than the time for the propagation of elastic waves through the
film.37-56

As shown in Figure 1, the displacement and velocity vectors of
the film are u and _u, respectively, which vary with spatial
coordinates x and y and with time t. The superscript denotes
the time derivative. For an incompressible film,

r! 3 u ¼ 0 and r! 3
:
u ¼ 0 ð2Þ

The constitutive relation is chosen to be a zero-frequency linear
viscoelastic model,

hh
σ ¼ pIþμðr!uþr!uTÞþ ηðr! :

uþr! :
uTÞ ð3Þ

where p is the pressure across the film. The parameters μ and η are
the shear modulus and the viscosity of the film, respectively.

By substituting eqs 2 and 3 into eq 1, the equation of motion is
modified to

r!pþμr2uþηr2 :u ¼ 0 ð4Þ
We assume that both of the films (adhesive and dewetting) are
bonded rigidly to the underlying substrate. No-slip and imperme-
ability boundary conditions are employed at the film-substrate
interface at the coordinate y = -h0. Thus,

uðx, -h0, tÞ ¼ 0 ð5Þ
and

:
uðx, -h0, tÞ ¼ 0 ð6Þ

The free surface of the film (at the coordinate y=0) is assumed to
be shear-free:

σyxðx, 0, tÞ ¼ 0 ð7Þ
The normal stress balance at the free surface yields

σyyðx, 0, tÞ ¼ γvxxðx, 0, tÞ-φðx, 0, tÞ ð8Þ
Here, the first term on the right-hand side represents the surface
tension force where γ is the surface energy, with v being the y
component of displacement. The normal displacement at the free
surface is thus represented by the quantity v(x, 0, t). The above
formalism and the linear stability analysis below are valid for any
arbitrary interaction force φ = ∂ΔG/∂v, which is related to the
interaction energy per unit area, ΔG(ξ). Here, ξ is an effective
intersurface distance between the surfaces undergoing an attrac-
tive force. For an adhesive film, ξ = d0 - v(x, 0, t), which is the
gap distance between the contactor and the film surface. For a
dewetting film, ξ=h0þ v(x, 0, t), which is the film thickness. For
illustration, we chose the van derWaals force φ= ∂ΔG/∂v, where
ΔG=-A/12πξ2 is the van der Waals energy per unit area and A
(∼10-20 J) is the Hamaker constant. Other forms of the potential
(e.g., electric field potential) can also be readily used in the
derivations presented here.

It may be noted that the van der Waals potential chosen here
neglects the effects of surface curvature, which is a good approx-
imation for long-wave instabilities.1-28 Even though we do not
assume long waves, a major conclusion that we will show on the
basis of the analysis below is that the instabilities in a “free” or
wetting van der Waals film are indeed always long-wave, regard-
less of the film’s viscoelasticity, including instabilities in purely
elastic films. For adhesive or confined films that are nearly elastic,

instabilities can be short-wave but their length scale becomes
independent of the form of the destabilizing potential!37-56 In
fact, all that is required is a critical magnitude of the attractive
destabilizing force; the precise form of the potential is not
important.37-56

Linear Stability Analysis

To perform linear stability analysis, the interaction energy is
expanded in a Taylor series about the reference state of the
undeformed film. By retaining terms up to second order, the
interaction energy has the form

ΔGðvðx, 0, tÞÞ ¼ ΔG0 þFvðx, 0, tÞþYvðx, 0, tÞ2
2

ð9Þ

For an adhesive film, the VDW interactions have the following
form

ΔG0 ¼ ΔGð0Þ ¼ -
A

12πd0
2
, F ¼ -ΔG0ð0Þ ¼ -

A

6πd0
3
,

Y ¼ ΔG00ð0Þ ¼ -
A

2πd0
4

ð10Þ

and for a dewetting film, they are

ΔG0 ¼ ΔGð0Þ ¼ -
A

12πh0
2
, F ¼ ΔG0ð0Þ ¼ A

6πh0
3
,

Y ¼ ΔG00ð0Þ ¼ -
A

2πh0
4

ð11Þ

Thus, the interaction force acting at the surface of the film is of the
form

φ ¼ F þYvðx, 0, tÞ ð12Þ
The homogeneous solution of the viscoelastic differential equa-
tion (eq 4) along with the boundary conditions (eqs 5-8) is that
of zero displacement, and the corresponding pressure field is
given by

pðx, y, tÞ ¼ -F ð13Þ
From eqs 10 and 11, it is evident that for an adhesive film
p(x, y, t) = A/6πd0

3 and for a dewetting film p(x, y, t) =
-A/6πh0

3. Therefore, during adhesion, the pressure across the
film is tensile, whereas for a dewetting film, the pressure is compres-
sive in nature, helping in both cases to engender surface instabilities.

To obtain the inhomogeneous solution, the homogeneous
solution is superimposed on a perturbation of the form

uðx, y, tÞ ¼ eikxuðyÞeωt ð14Þ

pðx, y, tÞ ¼ eikxpðyÞeωt ð15Þ
Here, ω is the linear growth rate and k is the wavenumber of the
pertubation. A positive (negative) value of ω indicates instability
(stability).

Linearization of the equation of motion (eq 4) along with the
boundary conditions (eqs 5-8) using the normal linear modes
(eqs 14 and 15) leads to the following dispersion relation

ω ¼ -Y -γk2

2kSðkhÞη -
μ

η
ð16Þ

where SðqÞ ¼ ð1þ e2qÞ2 þ 4e2qq2

ð-1þ e4qÞ-4e2qq
and q = kh.
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Asymptotic Cases. The two simpler limiting cases of the
general dispersion relation are discussed first to motivate a fuller
understanding of eq 16.

(i)Viscous Films (μf 0).The linear dispersion relation for the
dewetting/free1-23,25-28 and confined/adhesive viscous films24

can be obtained from the dispersion relation (eq 16) by setting
the elastic shear modulus equal to zero, which gives

ω ¼ -Y - γk2

2kSðkhÞη ð17Þ

This is a well-known result3-11,13,14,16-19,21-28,32 from which it is
easily verified that a viscous film is unconditionally unstable with
respect to a bandof longwaves for attractive interactions (Y<0),
regardless of their strength. An important point to note is that
there is no critical parameter to be tuned for the onset of
instability in a viscous film except for the critical wavelength
itself, which can become important only if the lateral dimension of
the film becomes comparable to the wavelength;on the order of
micrometers. Thus, in experiments with viscous liquidlike films,
one observes only the dominant or the fastest growing wave if it
grows within the laboratory timescale. Furthermore, the domi-
nant long wavelength of instability (dω/dk = 0) depends non-
linearly on the strength of the destabilizing force, surface tension,
and film thickness but is independent of viscosity.

(ii) Elastic Films (η f 0). In cases of both dewetting and
adhesive elastic films, the dispersion relation (eq 16) yields the
critical condition for the onset of the instability realized by setting
the neutral stability condition (ω= 0) and the viscosity equal to
zero,41,48

2qSðqÞ ¼ -
γ

μh

� �
q2 -

hY

μ
ð18Þ

Unlike the case of a viscous film, the onset of instability in
a purely elastic film requires a finite critical destabilizing
force.37,39-43,45-56

A further simplification of the above result is obtained for thick
micrometer-sized films where the surface tension force becomes
weak,40-42,45-47,51,53-56 and eq 18 can be further reduced to

2qSðqÞ ¼ -
hY

μ
ð19Þ

The critical force required to cause instability in elastic adhesive
films corresponds to the minimum Y for which eq 19 yields
positive finite solutions of q.40-42,45-47,51,53-56 The minimum of

-hY/μ is 6.22, and the corresponding critical wavelength is
obtained as λ/h = 2π/q = 2.96.37-43,45-56 The length scale in
this short-wave regime is on the order of the thickness of the film
and is independent of the destabilizing force, surface energy, and
rheology. It may be remembered, however, that this result
corresponds to the critical conditions at the onset of instability
in a purely elastic, relatively thick film. Physically, this critical
wavelength is observed in the experiments where one of the
bifurcation parameters (electric field strength, film thickness,
distance to the contactor, and elastic modulus) is varied until
the instability is manifested for the first time.39,48-50,52,54,55 In the
adhesion-debonding experiments with elastic films, the critical
wavelength continues to manifest itself even in the debonding
phase as the surfaces are pulled apart because of the adhesive
pinning of the critical structures to the contacting or retracting
surface.46,47,53 However, if an experiment is conducted such that
the initial state is alreadydeepwithin the unstable territory, then it
is the dominant wave rather than the critical wave that becomes
important. This can be realized, for example, by ramping up the
voltage beyond the critical voltage at time t = 0. However, as
discussed later, this issue becomes relevant only for a viscoelastic
solidlike film where the dynamics is controlled by its viscosity. A
purely elastic film has instantaneous dynamics when solid inertia
is neglected.

In view of the above discussion, we present results for the
behavior of both critical and dominant wavelengths.

The general dispersion relation can be recast in terms of
nondimensional parameters ηω/μ, -hY/μ, hk, and γ/μh,

ηω

μ
¼

-
hY

μ
-

γ

μh

� �
q2

2qSðqÞ -1 ð20Þ

Parameters ηω/μ and hk are the nondimensional growth rate and
wavenumber, respectively. The other nondimensional quantities
represent the ratio of the different forces operative in the films.
Parameter -hY/μ is the ratio of the destabilizing interaction
stiffness (-Y) and the elastic stiffness of the film (μ/h). This ratio is
a measure of the effective destabilizing forces vis-�a-vis the
stabilizing elastic force. The quantity γ/μh is the ratio of two
stabilizing mechanisms;surface tension and the elastic force.

Results and Discussion

Linear Stability Analysis for Adhesive and Dewetting

Viscoelastic Films.Figure 2A is the bifurcation diagram demar-
cating the regions of stability (ηω/μ<0) and instability (ηω/μg 0)

Figure 2. (A)Bifurcationdiagram showing regions of instability both for adhesive andwetting films forγ/μh=1.The inceptionof instability
occurswhen the interaction stiffness reaches a critical value-hYc/μ. (B) Cross-sectional viewof the bifurcation diagram inA for values of the
interaction stiffness less than, equal to, and greater than the critical value. The instability growth rate is positive onlywhen-hY/μ>-hYc/μ.
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(marked as the gray-scaled zone) in a typical viscoelastic film.
Thus, neutral wavenumber ηω/μ = 0 is the boundary of the
instability domain. In this Figure, parameter γ/μh (= 1) is kept
constant. The critical condition for the onset of instability is
marked by the critical growth rate (ηωc/μ=0), critical interaction
stiffness (-hYc/μ), and critical wavenumber hkc. It is denoted by
the point where two branches of the critical wavenumber emerge
and continue on in the unstable region. If the interaction stiffness
is greater than -hYc/μ, then there is a region bounded by two
neutral or critical wavenumbers within which the growth rate is
positive. A cross-sectional view of Figure 2A for three different
values of the interaction stiffness is shown in Figure 2B. It
indicates that for interaction stiffness lower than -hYc/μ
(namely, for wetting films with thickness greater than a critical
value and for adhesive film with the contactor-film separation
distance higher than the critical distance) the growth rate remains
negative for all wavenumbers and the system is stable. However,
for interaction stiffness greater than -hYc/μ, the growth rate is
positive for a range ofwavenumbers lying between hkN1 and hkN2.
Within this range of neutral wave numbers there is a dominant
wavenumber, hkm, where the growth coefficient is at itsmaximum
(ηω/μ = ηωm/μ). The critical condition thus essentially sees the
merging of the two neutral wavenumbers and the dominant
wavenumber to a single value of hkc.

Figure 3 shows the influence of elasticity and surface tension on
the instability characteristics. Figure 3A shows that for a constant
value of -h2Y/γ (exceeding the critical value), the growth coeffi-
cient decreases and the range of unstable wavenumbers shrinks
with a decrease in γ/μh. Similarly, for a fixed value of the
interaction stiffness (-hY/μ), as the nondimensional surface
tension (γ/μh) increases, the growth coefficient decreases and the
dominant wavenumber shifts to longer wavelengths (Figure 3B).
Furthermore, the neutral wavenumber hkN2 also decreases.

To assess the ease of initiating the instability in films with dif-
ferent physical properties, the critical interaction stiffness (-hYc/μ)
is plotted with γ/μh as shown by the solid line in Figure 4. It is
evident that-hYc/μ= 6.22 for γ/μh<10-2, which is indeed the
asymptotic limit for elastic adhesive films.40-42,45-47,51,53-56 In
addition, Figure 4 shows that the critical nondimensional force
-hYc/μ increases monotonically with γ/μh. The Figure indicates
that films with higher surface energy require a higher energy
penalty for deformations of the elastic film and the films under-
going adhesion require a smaller contactor-film separation
distance in order to acquire a higher destabilizing interaction
energy. For dewetting films, the critical film thickness below
which instability is possible decreases with increases in the surface
tension force. To show the effects of the shear modulus clearly,

a nondimensional parameter -h2Yc/γ is obtained from the
ratio of -hYc/μ to γ/μh. The broken line in Figure 4 shows that
-h2Yc/γ decreases monotonically with increasing γ/μh. The
Figure indicates that for a lower shear modulus, namely, for
more liquidlike films, the interaction energy required to bring
about the inhomogeneity is negligibly small and thus for viscous
films (μ f 0) the films indeed become unconditionally unstable.
However, dewetting films even with a small elasticity may require
a considerable amount of interaction force to initiate the instabi-
lity. A quick calculation proves that a viscoelastic filmwould have
to be very soft (μ≈ 1000 Pa or less) for the van derWaals force to
initiate instability in a wetting film of physically realizable and
meaningful thickness (>1 nm).

Figure 5 shows the variation of the critical wavenumber (hkc)
with γ/μh. The curve supplies the following set of interesting
information: (i) For dewetting films, the instability is always long-
wave regardless of its viscoelasticity because h has to be very low
so that the van der Waals force is strong enough to initiate the
instability and thus γ/μh has to be high (low hkc). (ii) For an
adhesive film, the instability can be either long-wave (high γ/μh)
or short-wave (low γ/μh). It is evident that for low values of γ/μh
(<10-2), hkc≈ 2.12 becomes independent of γ/μh and the critical
wavelength (λc= 2π/kc) approaches its elastic limit of 2.96h.37-56

In contrast, for higher values of γ/μh (high γ or low μ), the critical
wavelength increases considerably. In between the two distinct
short- and long-wavelength regimes, there is a transition zone
where γ/μh is between 10-1 and 1.

As shownelsewhere,41,48 for adhesive films of thicknessh>1μm,
the surface tension forces (γ/μh , 1) are negligible and the

Figure 3. (A) Increasing elasticity (μ) (markedby lower valuesofγ/μh) shrinks the instability zone. (B) Increasing surface tension (γ) (marked
by higher values of γ/μh) also shrinks the instability zone and shifts the neutral and dominant wavenumbers toward the long-wave limit.

Figure 4. Critical interaction stiffness -hYc/μ is an increasing
function of γ/μh, indicating that the surface penalty required to
overcome the interaction energy is higher for films with higher
surface tension effects. Nondimension parameter -h2Yc/γ de-
creases with γ/μh, showing that films with smaller elasticity effects
(low values of shear modulus μ) are unconditionally unstable.
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wavelength is ∼3h. However, for thinner films, the contribution
for the surface tension force increases the wavelength to the
longer-wavelength regime. The transition of the scaling factor for
λ/h from ∼3 to a higher value in the critical region is shown in
Figure 6 for different values of the thickness and shear modulus.
The graph shows that the transition occurs faster to higher values
of the scaling factor for softer films with a lower shear modulus at
higher thickness. Thus, when the surface tension parameter γ/μh
has considerable influence, it is possible to have a higher scaling
factor for λ/h and thus a shift in the wavelength from short-wave
to long-wave occurs even for purely elastic adhesive films.41,48

This result is further verified through direct simulations shown
later in the article.

As already discussed, in the case of an adhesive film, the destabil-
izing intermolecular interaction is a function of the contactor-
film separation distance, and for a soft elastic film (low shear
modulus), instability is possible for all reasonable film thick-
nesses.47 However, for a wetting film, the strength of the inter-
molecular force is a function of the film thickness, and instability
is possible only below a critical thickness (hc). Figure 7 is an
illustrationof these critical thicknesses ofwetting films for varying
amounts of elasticity and surface tension for the films subjected to

intermolecular interactions. The Figure shows that hc decreases
with increasing shear modulus (μ) and surface tension (γ) of the
film. TheFigure and its inset show that shortwaves, which require
a small nondimensional parameter, γ/μh<1, are possible only if
the film thickness is in the subnanometer range, unless the film
material is very soft (μ< 100 Pa). Thus, for an unstable, soft thin
viscoelastic wetting film, the surface tension always plays an
important role and the instability is thus always long-wave,
irrespective of whether the film has purely viscous or elastic or
mixed characteristics.

It may be noted that unlike the dominant wavelength that is
independent of rheology (discussed later in the section), the
critical conditions (ηωc/μ, -hYc/μ) and critical wavelength
are strong functions of the elasticity of the film (μ). Strikingly,
the critical conditions are also independent of the viscosity (η) of
the film. Interestingly, Figure 7 shows that even the introduction
of negligible elasticity, μ = 10-2 Pa, decreases the critical
thickness to ∼20 nm (γ= 10 mJ/m2), which is otherwise infinite
for a truly viscous film where μ f 0.22

Figure 8A shows the functional dependence of the dominant
wavenumber (hkm) and the interaction stiffness (-hY/μ) of the
film for different values of γ/μh. It is evident that hkm increases
(dominant wavelength decreases) with the increase in the inter-
action stiffness and decreases (dominant wavelength increases)
with increasing effects of surface tension. Figure 8B show the
variation of hkmwith-h2Y/γ [= (-hY/μ)/(γ/μh)]. Dimensionless
parameter-h2Yc/γ is the ratio of the destabilizing intermolecular
force to the stabilizing surface tension force. It is also evident from
Figure 8B that under critical conditions the dominant wavelength
is found to coincide with the critical wavelength and at values of
interaction stiffness > critical the dominant wavelength is found
to form the locus of the critical wavelength. The Figure clearly
illustrates that there exist two distinct limits of the dominant
wavenumber. As -h2Y/γ f ¥, the dominant wavenumber
reaches a constant value of 2.12, independent of parameter
-h2Y/γ. This essentially results in the independence of the
dominant wavelength (λ ≈ 3h) with respect to the precise nature
and magnitude of the destabilizing interactions. In this limit, the
dominant wavelength is short-wave and is proportional to the
thickness of the film. However, in the other limit where -h2Y/γ
approaches 0, the dominant wavenumber is an increasing func-
tion of -h2Y/γ and thus the wavelength is highly dependent on
the nature and magnitude of the interactions, as observed in
experiments involving viscous films. The dominant wavelength in
this limit is 2π/(-Y/2γ)0.5, which is equivalent to the wavelength
obtained under the long-wave approximations that are valid for
purely viscous liquid films.3-14,16-34 This long-wave approximation

Figure 5. Critical wavenumber as a function of γ/μh. For γ/μh<
10-2, hkc is independent of surface tension effects and is constant at
2.12. The initiation of instability in this regime occurs in the short-
wave regime. With increases in γ/μh, the initiation of instability
occurs in the long-wave regime.

Figure 6. Transition of coefficient λ/h in elastic adhesive films at
the critical separation distance from ∼3 at higher thicknesses to
higher values at lower thicknesses. The transition occurs faster at
higher thicknesses for films with a lower shear modulus.

Figure 7. Critical thicknesses of films for varying amounts of
elasticity (μ) and surface tension (γ). The plots represent values
of γ/μh higher than 1, and the inset represents values of γ/μh< 1.
For thin films with greater than 1 nm thickness, the surface tension
effects play an important role such that the inception of instability
occurs only through long waves.
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can also be obtained analytically with the help of the simplified
dispersion relation obtained in eq 17. If the limit khf 0 is taken in
the expansion ofS(kh) and terms up to fourth order (higher order
terms being negligible) are kept in the expansion of exp[β], (β =
2kh or 4kh), then eq 17 simplifies to ω = h3/3η[-Yk2 - γk4],
which on differentiation with the wavenumber yields the criteria
for the dominantwavelength tobe 2π/(-Y/2γ)0.5. Furthermore, if
we consider the case of a wetting film destabilized by the van der
Waals force (-Y= A/2πh4), then it is evident that the dominant
wavelength (λm) varies as h2 (not linearly as in the limit of an
elastic film). The crossover of the dominant wavenumber to the
long wave occurs around γ/μh ≈ 5 � 102. Figure 8B also reveals
that the dominant wavenumber depends only on the parameter
-h2Y/γ, making it independent of the rheological properties
(μ and η) associated with the film in both the viscous and elastic
limits. This is strikingly different from the strong dependence of
the critical conditions and the critical wavelength in the viscoe-
lastic films on the elasticity of the film. The above argument can
also be proven analytically wherein it can be illustrated from the
dispersion relation that to obtain the condition of dominant
wavelength the following equation has to be satisfied: (-hY/
μ)[S(qm) þ qmS

0(qm)] þ (γ/μh)qm
2[S(qm) - qmS

0(qm)] = 0. Thus,
parameters -hY/μ and γ/μh can be easily combined into a new
parameter -h2Y/γ, and the dominant wavenumber qm is depen-
dent only on this new parameter, which is devoid of any
rheological quantity.

Figure 9 depicts the nondimensional characteristic time (Tμ/η
whereT=1/ω) for the dynamics of instability. It is evident that as
the value of -h2Y/γ increases, Tμ/η decreases. This implies that
the time required for the formation of patterns in a viscoelastic
film is considerably lower than that for viscous films and in the
limit of truly elastic materials the structures will develop instan-
taneously. Of course, this fast elastic timescale has to be tempered
by the inertial effects. The Figure also shows that with an increase
in nondimensional parameter γ/μh the nondimensional time
(Tμ/η) decreases for viscous films. However, the absolute time
is higher for such viscous films as argued above because the
nondimensional time has a factor of η/μ, which for viscous films
has a large numerical value.
Equilibrium Morphologies of Adhesive and Dewetting

Elastic Films. Morphological reorganization and pattern for-
mation by the van der Waals force in thin, dewetting viscous
films1-23,25-28 and thin viscous films in adhesive contact24 have
been extensively studied. More recently, the patterns formed in
elastic confined or adhesive films with van der Waals and electric
fields have also been investigated.37-39,43,45-56 A similar procedure
of energyminimization is adopted in the present study to reveal the

3D equilibrium morphologies of perfectly elastic adhesive and
dewetting films with effects of surface tension and elastic stabiliza-
tion included. The displacement (shape) of the film may be
represented by its Fourier series constructed by the displacements
in the direction normal to the free surface46-48,53-56

vðx, 0, zÞ ¼
X2M-1

m¼0

X2N-1

n¼0

vccðm, nÞ cosðkmxÞ cosðknzÞ

þ vcsðm, nÞ cosðkmxÞ sinðknzÞþ vscðm, nÞ sinðkmxÞ cosðknzÞ
þ vssðm, nÞ sinðkmxÞ sinðknzÞ ð21Þ

where vcc, vcs, vsc, vss are the Fourier coefficients and kl = (km
2 þ

kn
2)1/2 is the wavenumber corresponding to m and n modes of

deformation with km = πm/L1 and kn = πn/L3. 2L1 and 2L3 are
the length of the film along the x and z directions.

The total energy of the film is composed of the elastic strain
energy ΠE ¼ R

V
1
2
σijεij dVwhere σ is the stress tensor as defined

in eq 3 neglecting the viscous part and ε is the strain tensor defined
as the symmetric part of Δu. The interaction energy is

Q
U,

which is composed of the van der Waals attraction and a short-
ranged Born repulsion, ΠU = (-A/12πξ2) þ (B/ξ8). Here, ξ is
the effective distance as discussed earlier, defined differently
for the two cases of adhesive and wetting films, A is the
Hamaker constant (∼10-20J), B is the coefficient of the Born
repulsion set from the conditions at equilibrium distance
de,

Q0
U(de) = 0 and

Q
U(de) represent the adhesive energy,

which is ∼10.6 mJ/m2. The surface energy is given by

ΠS ¼ γ
R
S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

Dv
Dx

�2 þ Dv
Dz

� �2q
dS. Individual terms

Q
E,

Q
U, and

Figure 8. (A)Variationof the dominantwavenumberwith the interaction stiffness fordifferent values of the surface tensionparameter,γ/μh.
(B) Thedominantwavelength is a function of-h2Y/γ only, independent of rheological propertiesμ and η.Dominantwavenumber hkm forms
the locusofhkc.For lower valuesofγ/μh,-h2Y/γ tends towards infinityand thedominantwavenumber hkm takes a constant valueof 2.12, the
limit for elastic adhesive films with short-wave instability. The dominant wavenumber merges with the long-wave approximation for γ/μhg
5 � 102.

Figure 9. Nondimensional time required (Tμ/η) to form equilib-
rium structures as a function of -h2Y/γ. The time required for
viscoelastic films with higher elastic effects (with higher values of
-h2Y/γ) is considerably lower than that required for viscoelastic
films with higher viscous effects (with lower values of-h2Y/γ).
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Q
S can be expressed in terms of Fourier coefficients vcc, vcs, vsc,

and vss, and thus the total energy of the elastic film becomes a
function of these coefficients. For a given thickness of the elastic
film, the equilibrium profile of the film surface (eq 21) is obtained
byminimizing the total energy (

Q
Eþ

Q
UþQ

S) in terms of these
Fourier coefficients using a conjugate gradient minimization
algorithm. The Fourier coefficients in eq 21 are initially assigned
small random values to initiate the search process for obtaining
the minimum-energy configuration. The energy-minimized con-
figurations that evolve are stable against small random perturba-
tions. Further details of the method and a discussion of locally
metatable states in elastic films can be found elsewhere.45-49,53,56

The minimum-energy states (shapes) are the equilibrium surface
profiles that do not undergo any further coarsening. In fact, there
is nomechanism of coarsening such as flow or diffusion present in
an elastic film.

Figure 10 reveals the surface morphologies of elastic adhesive
films in contact with a rigid contacting surface separated by the
critical mean distance at which the instability is initiated.
Figure 10A depicts the case of a film with thickness h = 10 μm,
μ= 1MPa, and γ=30mJ/m2, and Figure 10B shows a filmwith
the same surface tension value of 30 mJ/m2, thickness of 0.1 μm,
and shear modulus of 0.1 MPa. Both interfaces show a labyrinth
type of patternwhere the darker regions are the regions in contact
and the lighter regions are the out-of-contact depressions formed
on the film surface. Both Figures have an area of 32h � 32h. The
difference in the two Figures, however, lies in the wavelength of
the patterns formed. The former case exemplifies a short-wave
elastic instability with a length scale of λ = 2.97h as obtained
through simulations, which compares favorably to the value of
λ = 2.96h predicted from the linear theory (Figure 5). The latter
simulations represent a longer-wave instability with λ = 6.4h,
which is also in agreement with the linear theory predictions of
6.14h. These results are also expected because for the first case the
value of parameter γ/μh is 0.03 (,1), which is within the limit of
short-wave instability. For the latter case, the crossover of λ/h to
higher values occur as γ/μh = 3 (>1) in this case. These
simulations further confirm that for elastic adhesive films the
instability length scale is indeed tuned by parameter γ/μh.41,48 It
may be noted that for adhesive elastic films with short waves (for
example, the simulations in Figure 10A) the areas of contact with
the external contactor are flat and the intersurface distance from
the edges increases rapidly so that theVDW interaction outside of

contact has a negligible contribution. This point is well known
from the previous publications cited on purely elastic films. Thus,
a simplified van der Waals potential used here by neglecting the
curvature effect is suitable for illustrating the instability.

Figure 11 shows equilibrium morphologies of elastic wetting
films at their critical thicknesses. Figure 11A,C represents films
with a surface tensionvalue of 10mJ/m2 and critical thicknesses of
2 and 3 nm, respectively, andFigure 11B,D represents filmswith a
surface tension value of 30mJ/m2 and critical thicknesses of 2 and
5 nm, respectively. The corresponding shear moduli for these
films (Figures 11A-D) are obtained from Figure 7 and have
values of 613.2, 215, 83.4, and 2.4 Pa, respectively. For the soft
elastic films (Figures 11 A-D), the dominant wavelengths are
obtained from the Fourier analysis of the equilibrium morpho-
logies and have of values 90.5, 162, 213, and 905 nm, respectively.
The linear stability analysis based on the van der Waals force
predicts the critical/dominant wavelengths to be 90.5, 155, 202,
and 997 nm, respectively. Thus, it is evident that the two results
are in good quantitative agreement. The wavelength increases
with the thickness of the film. In fact, it has the same scaling as for
a wetting viscous film, namely, the dominant wavelength in this
case increases as ∼h2. This shows that irrespective of the film
rheology the instability in wetting films always has long-wave
character in both viscous and elastic films and also in general
viscoelastic films. This is in contrast to a relatively thick elastic
adhesive film where the short wavelength increases linearly with
the film thickness. The long-wave nature of viscoelastic wetting
films is understood by noting that the critical thicknesses of these
films are very small and the values of parameter γ/μh for these
films are thus very high. From Figure 8, it is evident that in this
regime (where γ/μh ≈ 103-106) the critical or the dominant
wavelength is dependent on the interaction stiffness and forVDW

Figure 10. Labyrinth types of pattern formation at the surfaces of
elastic adhesive films in contact proximity. The darker regions
are the regions of contact. Film parameters are h = 0.1 μm, μ =
0.1MPa,A=10-20 J, andγ=30mJ/m2 forAandh=10μm,μ=
1MPa,A=10-20 J, and γ=30mJ/m2 for B. For the former case
(γ/μh = 0.03 (,1)), the dominant/critical wavelength is short-
wave with λ= 2.97h (2.96h predicted by theory), and for the later
case (γ/μh = 3 (>1)), the dominant/critical wavelength is long-
wave with λ= 6.4h (6.14h predicted by theory).

Figure 11. Morphologies of wetting films at critical thicknesses
for (A) a filmwith a thickness (hc) of 2 nmand a surface tension (γ)
of 10mJ/m2; (B) a filmwithhc=2nmandγ=30mJ/m2; (C) a film
with hc= 3 nm and γ=10mJ/m2; and (D) a film with hc= 5 nm
and γ = 30 mJ/m2. The wavelengths obtained from simula-
tions and predicted by theory for the films are (A) 90.5 nm (from
simulations) and 90.5 nm (from theory), (B) 162 nm (from simu-
lations) and 155 nm (from theory), (C) 213 nm (from simulations)
and 202 nm (from theory), and (D) 905 nm (from simulations) and
997 nm (from theory).
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interactions give λ≈ h2. The morphologies from simulations also
reveal a striking feature that the linear stability analysis fails to
provide. The morphologies show that irrespective of the effect of
surface tension,when the critical thicknesses of the films are small,
the structures formed are islands surrounded by air. In the Figure,
the darker regions of the contour plots denote regions of smaller
thickness and the lighter regions are regions of higher thickness.
At higher critical thicknesses, the equilibrium morphologies
obtained are opposite of those obtained for lower thickness.
The instability now produces equilibrium structures of holes em-
bedded in the surroundings of higher thicknesses. These reverse
morphological structures obtained in perfectly elastic wetting
films are reminiscent of the same island and hole structures
obtained for thinner and thicker viscous liquid wetting films,
respectively,2,5-7,9,13,14,16,21,22,24,28 upon dewetting.

Figure 12A-C show the equilibrium surface patterns for films
at critical thickness. When the thickness of the film is less than the
critical, the equilibrium film surface increasingly takes the form of
a chain of connected islands, irrespective of the surface morpho-
logy (islands or holes) displayed for this system at the critical point.
For a purely elastic film with no viscous component, there is no
dominant wavelength but there are two critical wavenumbers in
the unstable region as seen in Figure 2. Interestingly, the simula-
tion of Figure 12 also fails to show a single dominant wavelength

but displays instead two significant wavelengths, primary and
secondary, where the intensity of the Fourier coefficients are
highest and second highest. These wavelengths are in between the
neutral/critical wavelengths as predicted from linear theory. In
fact, the bimodality observed in simulations gives the two wave-
lengths that are close to the two neutral wavelengths predicted
from linear theory when the film thickness is slightly below its
critical value. Physically, this primary wavelength can be viewed
as the interchain separation distance where as the secondary
wavelength resembles the distance present between the individual
intrachain islands. For thewetting films, both the primary and the
secondary wavelengths decease to lower values as the film thick-
ness decreases further from its critical value, indicating a stronger
instability (as shown in the caption of Figure 12).

Conclusions

We have presented a unified theory of the stability of soft
viscoelastic thin films that uncovers the conditions and different
regimes of instability in systems of nanoscopic to microscopic
thickness from purely viscous liquids to purely elastic solid
materials, from short to longwaves, and fromwetting to confined
film geometries. Furthermore, conclusions based on the linear
stability analysis are both verified and extendedby simulations for
thin, soft elastic films. Although we have chosen the long-range

Figure 12. (A-C)Filmswith a surface tensionof 10mJ/m2 and critical thicknesses of 2, 3, and 5 nm, respectively.The dominantwavelengths
obtained from simulations are 90.5, 213, and 572 nm, respectively, compared to theoretical values of 90.5, 202, and 555 nm, respectively.
Below their critical thicknesses, the filmsurfaces take the formofan interconnected chainof islandsofhigher thickness surroundedbya filmof
equilibrium thickness. For other physical conditions that are the same as in panel A, films below their critical thicknesses in panels D and G
have thicknesses of 1.8 and 1 nm, respectively. The primary and secondary wavelengths of these films are 103 and 73 nm in panel D and 57.2
and 25 nm in panel G, respectively, and the neutral wavenumbers are 126 and 69 nm in panel D and 157 and 16.5 nm in panelG, respectively.
Below the critical thicknesses for other physical conditions that are the same as inpanelB, films inpanelsE andHhave thicknesses of 2 and1.5
nm, respectively. The primary and secondary wavelengths of these films are 229 and 110 nm in panel E and 135.8 and 60 nm in panel H,
respectively, and the neutral wavenumbers are 314 and 74 nm in panel E and 314 and 36.5 nm in panel H, respectively. Below the critical
thicknesses for other physical conditions that are the same as in panel C, films in panels F and I have thicknesses of 4.5 and 3 nm, respectively.
The primary and secondary wavelengths of these films are 639 and 515 nm in panel F and 362 and 210 nm in panel I, respectively, and the
neutral wavenumbers are 707 and 428.4 nm in panel F and 942.5 and 157 nm in panel I, respectively.
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attractive van der Waals destabilizing force for the specific
numerical results displayed here, the equations and methodology
presented are general for any form of destabilizing potential,
including the electric field.

The significant findings of the linear stability analysis and
numerical simulations carried out in the present study are
summarized below.

(i) A purely viscous film is unconditionally unstable
even for a vanishingly small attractive force. How-
ever, the introduction of solid, zero-frequency elas-
ticity introduces the concept of a finite critical force
or critical thickness for the initiation of instability.
Instability at the film surface is possible when the
interaction stiffness of the destabilizing force exceeds
a critical value determined by the elastic stiffness and
surface tension. The bifurcation diagram shows that
the instability zone is enclosed between two neutral
wavenumbers (where the growth rate is zero). At the
critical point, these two neutral wavenumbers merge
into a single critical value marking the maximum
growth rate. The instability zone shrinks in area with
increase elasticity and surface tension effects because
the introduction of both of these effects makes it
difficult for the film to develop surface instabilities.
This effect is captured in computations of the increased
critical interaction stiffness (-hYc/μ,-h2Yc/γ), which
is required to initiate instability with increased sur-
face tension and shear modulus.

(ii) The critical wavenumber of viscoelastic films, both in
wetting and adhesive configurations, has two asymp-
totic limits of short waves and long waves that are
determined only by parameter γ/μh. The first limit is
encountered if γ/μh < 10-2. In this limit, the critical
wavelength remains constant at 2.12 (λ = 2.96h),
which is independent of rheology, the destabilizing
force, and the surface energy! This was re-
ported for relatively thick,micrometer thickness elastic
films interacting with rigid contactors.40-42,45-47,51,53-56

In the other limit where γ/μh >1, the critical wave-
length approaches the long-wave regime as com-
monly seen in viscous wetting films.1-23,25-28 For a
wetting viscoelastic film with physically realistic
parameters (for critical thicknesses greater than 1 nm),
the instability is always found to be long-wave. Thus,
an experimentally observable transition between

short and long waves by varying the elastic modulus,
thickness, and surface energy is possible only in
elastic adhesive films41,48 where the scaling for λ/h
changes from its purely elastic thick film value of∼3
to much higher coefficients that depend on the para-
meter, γ/μh.

(iii) Critical conditions ηω/μ>0and-hYc/μ required to
initiate the instability are strong functions of the
elastic properties of the film. The dominant wave-
length of the film, in contrast to the critical condi-
tions, is independent of the rheological properties
and is only a function of nondimensional para-
meter -h2Y/γ.

(iv) As in the case of the critical wavelength, there are also
two distinct limits for the dominant wavelength: the
short-wave limit that is independent of the force and
rheology (hkm= 2.12) and the long-wave limit where
the wavelength is nonlinearly dependent on the
magnitude and nature of the destabilizing interac-
tions, film thickness, and surface energy (hkm =
(-h2Y/2γ)0.5).

(v) As anticipated, linear stability analysis shows that
the time of evolution of the patterns increases
with viscosity and is thus negligible for purely
elastic films when its fast dynamics (inertia) is ne-
glected.

(vi) The simulation results show that these equilibrium
morphologies for purely elastic wetting films (as also
commonly observed in viscous wetting films) are all
long-wave and have two distinct morphological sig-
natures for higher and lower critical thicknesses. At
lower critical thicknesses, the structures formed are
islands surrounded by films of equilibrium thickness.
For higher critical thicknesses, the structures formed
are holes surrounded by the film phase. Finally,
unstable wetting elastic films with thicknesses lower
than the critical thickness are found to form inter-
connected islands with a bimodal distribution of
wavelengths.
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