Indian Institute of Technology, Kanpur Proposal for a New Course

Course No:	CHM6XX
Course Title:	Computational Electronic Structure of Solids
Credits:	3-0-0-0 (9)
Course Duration	Full Semester
Proposing Department/IDP:	Chemistry (CHM)
Departments/IDPs which may be interested in the proposed course:	PHY, MSE, MSP, CHE, ME, EE, AE, SEE
Pre-requisites:	Any one course with fundamentals of quantum mechanics
Proposing Instructor:	Dr. Dasari L. V. K. Prasad

Course Description: This course aims to provide broad understanding of a spectrum of state-of-the-art computational electronic structure methods and tools used in materials science and engineering. Lectures, case studies, demonstrations and hands-on exercises are planned, to provide theoretical and practical knowledge required comprehending the process-structure-property relationships and in aiding the discovery and design of new materials.

#	Торіс	# of Lectures
1	Introduction to the course: The gist of relating electronic structure of materials to cohesion, electrical, optoelectrical, mechanical and other various physicochemical properties	02
2	The Basic Approach: Quantum mechanical description of atomic states, molecules and extended solids – the metals and semiconductors	12
3	Unified Electronic Structure Theory for Periodic Systems: k-mesh, Brillouin zone sampling, pseudopotentials, planewave basis set and self-consistent electronic minimizations	10
4	Total Energy and Beyond: Cohesion, modulus of elasticity, States in k-space, phonons, and phase transitions	08

5	Codes and Testing: Linux HPC environment, scripting -		
	coding, graphing, error estimates - uncertainty quantification		
	Hands-on Numerical Experiments: Structure description,		
6	modeling and simulations of materials – analysis of electronic	08	
	structure, estimation of forces and force constants, diffusion		
	and mechanical properties		

Short summary for including in the Courses of Study Booklet: Chemistry and Physics of Materials; theoretical and computational electronic structure theory; total energy calculations of periodic solid state materials; plane waves and pseudopotential model; Kohn-Sham first principles schemes; tetrahedral solids; zone integrations; band dispersion spectra; lattice vibrations; bulk modulus and elastic constants; numerical high performance computing simulations.

Recommended books/ References:

- 1. Solid State Theory and Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond, Walter. A. Harrison
- 2. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, Roald Hoffmann
- 3. Atomic and Electronic Structure of Solids, Efthimios Kaxiras
- 4. Solid State Physics, Neil W. Ashcroft, N. David Mermin and Quantum Theory of Solids, Charles Kittel
- 5. Reviews and discussions on subject matter will be suggested.

Dated: 18-08-2022 Proposer: Dr. Dasari L. V. K. Prasad

Dated: 21 / 8 / 2022 DUGC/DPGC Convener

The course is approved / not approved

Chairman, SUGC/SPGC

Dated:_____