Department of Chemical Engineering Indian Institute of Technology Kanpur

Proposal for a new course

Title: Artificial Intelligence in Systems Biology

Course No.: ChE6XX

Structure: 3 lectures per week. (3-0-0-9) (Total 40 lectures)

Duration of Course: Full semester

Prerequisite: None

Open to: PG students and third-year and fourth-year UG students.

Proposer: Sana Khanum (FB-466, skhanum@iitk.ac.in), Department of Chemical

Engineering

Other faculties interested in teaching the course: Indranil Saha Dalal, Salman Ahmad Khan

Course objectives: This course aims to build on the fundamentals (theory and programming) of artificial intelligence (AI), machine learning (ML), and deep learning (DL), and expose students to the applications of AI/ML/DL in chemical engineering. The course will also introduce the students to the recent advances in the field.

Course contents:

S.	Title	Topics	No. of Lectures
No		-	
1.	Introduction to Artificial	Introduction to AI and its	3
	Intelligence (AI)	applications in various fields of	
		ChE. Introduction to Jupyter	
		Notebook, Python Libraries,	
		PyTorch, and TensorFlow	
2.	Applied Mathematics and	Linear Algebra, Probability,	3
	Machine Learning (ML)	Density Estimation, Information	
	basics	Theory, ML Basics	
		Principal Component Analysis,	
		and relevant Python libraries	

	1	1	_
3.	Applications of ML	Applications of ML in Chemical Engineering, including biochemical process design, optimization, and control, biomaterial and product property prediction	2
4.	Deep Learning Basics	Single-layer NN, Multi-layer Perceptron, ANN, CNN (Theory and Computing)	3
5.	Optimization algorithms for Deep Learning	Convexity, Gradient Descent, Stochastic Gradient Descent, Minibatch Stochastic Gradient Descent, Momentum, Adagrad, RMSProp, Adadelta, Adam, Learning Rate Scheduling	3
6.	Deep Learning (DL)	Vanishing gradients, skip connections, batch normalization, transfer learning, and data augmentation	3
7.	Deep Learning Techniques	RNN, GRU Networks, LSTM, Transformers, Autoencoders, Diffusion Models (Theory and Computing)	5
8.	Applications of Deep Learning	Applications of Deep Learning in Chemical Engineering, including Physics-informed neural networks, deriving causality for gene regulatory networks	2
9.	Computer Vision	Introduction to Image Augmentation, Fine-tuning, Object detection and bounding boxes, Anchor boxes, Multiscale object detection (Theory and Computing)	3
10.	Applications of Computer Vision	Applications of Computer Vision in Chemical Engineering, including computer vision in cell biology, and computer vision for material discovery	2
11.	Natural Language Processing	Introduction, Various NLP techniques: Word Embedding (word2vec), Word Embedding with Global Vectors (GloVe), Bidirectional Encoder Representations from	5

		Transformers (BERT) (Theory	
		and Computing)	
12.	Applications of Natural	Applications of Natural	2
	Language Processing	Language Processing in	
	(NLP)	Chemical Engineering, including	
		studying protein-ligand	
		interactions, analysing single-cell	
		data	
13.	Large Language Models	Introduction to LLMs, Fine-	4
	(LLMs)	tuning, distillation, and prompt	
		engineering, overview of the	
		LLM architecture, and some use	
		cases of LLMs	
Total:			40

Expected enrolment: \sim 50-60

Other departments to which the proposed course will be of interest: AE, ME, CE

References:

- 1. [PY] Python Data Science Handbook by Jake VanderPlas, 2016. https://jakevdp.github.io/PythonDataScienceHandbook/
- 2. [PPA] Patterns, predictions, and actions: A story about machine learning by Moritz Hardt and Benjamin Recht, 2022, https://mlstory.org/pdf/patterns.pdf
- 3. [DL] Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville, 2016. http://www.deeplearningbook.org
- 4. [DD] Dive into Deep Learning by Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, 2023. https://d2l.ai/
- 5. [LLM] Build a Large Language Model from Scratch by Manning Publications

3. [EEM] Build a Barge Banguage Would	r from Seraten by Manning 1 denourons		
Dated: 26/09/2025	Proposer: Sana Khanum		
Dated:	DPGC Convener:		
The course is ap	The course is approved / not approved		
Chairman,	SUGC		
Dated:			