Indian Institute of Technology,

Kanpur Proposal for a New Course

1. Course No: EE698Q (Old Course No)

2. Course Title: 5G Wireless Technologies

Per Week Lectures: 3_(L), Tutorial:_(T), Laboratory: _____(P), Additional Hours[0-2]:
 (A), Credits (3*L+2*T+P+A): 9 Duration of Course: Full Semester

4. Proposing Department/IDP: EE

5. Proposing Instructor(s): Aditya Jagannatham (adityaj@iitk.ac.in)
Other faculty members interested in teaching the proposed course:
Swamy Peruru (swamyp@iitk.ac.in), Rohit Budhiraja (rohitbr@iitk.ac.in)

6. Course Description:

Objectives: The course will present an in-depth analysis of several key 5G wireless technologies such as Massive MIMO, mmWave MIMO, Filter Bank Multi-Carrier (FBMC), Non-Orthogonal Multiple Access (NOMA), Full-Duplex (FD) etc. It is also intended to cover other advanced wireless technologies such as Cooperative Communication, Cognitive Radio, Multi-User MIMO and more. Finally, students working in groups of two are expected to prepare a term paper that will focus on an in-depth study and analysis of any cutting edge 5G wireless technology of their choice.

Contents (preferably in the form of 5 to 10 broad titles):

S.	Broad Title	Topics	No.	of
No.			Lectu	res
			(1.5	hours
			each)	
1.	Evolution of	Evolution of Wireless Cellular Technologies -	1	
	Wireless	2G/ 3G/ 4G. Introduction to 5G Wireless		
	Cellular	Networks and Technologies		
	Technology			
2.	MIMO Wireless	MIMO Wireless Systems. Performance of	2	2
	Systems	Multi-Antenna and MIMO Wireless Systems.		
		Optimal Precoding and Power Allocation for		
		Multi-User MIMO Systems		
3.	Massive MIMO	Introduction to massive MIMO Systems –	4	1
	Systems,	Key Features. Signal Processing for		
	Processing and	massive MIMO with Perfect Channel State		
	Performance	Information – Rate Scaling. Channel		
		Estimation for massive MIMO Systems and		
		Rate scaling in massive MIMO systems with		
		CSI Uncertainty		

4.	New Modulation for 5G	Spatial Modulation of Massive MIMO Systems	1
5.	mmWave Wireless Systems	Introduction to mmWave MIMO Wireless Systems, Properties and Modeling of mmWave Wireless Channels, Analog, Digital and Hybrid Processing for mmWave MIMO Wireless Systems	2
6.	Transceiver Design for mmWave	Channel Estimation in mmWave Wireless Systems and Introduction to Sparse Processing, Design of Optimal RF/ Baseband Precoders and Combiners for mmWave MIMO Wireless Systems	3
7.	Filter Bank Multi-Carrier Systems	Introduction to Filter Bank Multi-Carrier Systems – Key Properties and Advantages, FBMC System Model – Intrinsic Interference, Signal Transmission and Decoding in FBMC Systems, Performance Analysis of FBMC Systems and Comparison with OFDM Systems	3
8.	Non- Orthogonal Multiple- Access (NOMA)	Introduction to NOMA Wireless Systems, System Model and Decoding for NOMA Systems, Performance Analysis of NOMA Networks – Outage Probability, Optimal Performance of NOMA Systems and Average Rate	3
	Full-Duplex Wireless Technology	Introduction to FD Wireless Technology, Self Interference in FD System and Resulting Performance, Optimal Signal Processing for FD Systems, Optimal Power Allocation and Performance of FD Systems	2
	Cooperative Wireless Communication	Introduction and Protocols for Cooperative Wireless Communication, Decode-and-	3
	Cognitive Radio Systems	Introduction to Cognitive Radio Concept and Software Defined Radio (SDR), Spectrum- Sensing for Cognitive Radio Systems, Optimal Power Allocation and Interference Suppression for MIMO Cognitive Radio Systems	2
		Total Lectures (1.5 hours each)	26

- A) **Pre-requisites**: EE320 (Principles of Communication Systems)
- B) Short summary for including in the Courses of Study Booklet: The course will present an in-depth analysis of several key 5G wireless technologies such as Massive MIMO, mmWave MIMO, Filter Bank Multi-Carrier (FBMC), Non-Orthogonal Multiple Access (NOMA), Full-Duplex (FD) etc. It is also intended to cover other advanced wireless technologies such as Cooperative Communication, Cognitive Radio, Multi-User MIMO and more.
- 7. Recommended reference:
 - Fundamentals of Massive MIMO By Thomas L. Marzetta, Erik G. Larsson, Hong Yang, Hien Quoc Ngo
 - Millimeter wave wireless communications By Theodore S. Rappaport,
 Robert W. Heath, Robert. C. Daniels, James N. Murdock
- **8. Evaluation Policy:** Assignments: 10%, Mid-sem: 25%, Endsem: 35%, Quizzes 20% Term paper 10%
- 9. Course strength last three times:

2024-2025 Semester II: 60; 2019-2020 Semester II: 41; 2018-2019 Semester II: 51;

Dated: 11/09/2025 Proposer: Aditya Jagannatham

Dated: DUGC/DPGC Convener:

The course is approved / not approved

Chairman, SUGC/SPGC

Dated:
