Indian Institute of Technology, Kanpur

Proposal for a new course

1. Course No.: KSS 6XX

2. Course Title: Biophysics, Ecology, and Sustainability

3. Per Week Lectures: 3(L), Tutorial: 0 (T), Laboratory: 0 (P), Additional Hours: 0 (A)

4. **Credits:** (3*L+0*T+P+A): 9

5. **Duration of Course:** Full Semester

6. **Proposing Department:** Kotak School of Sustainability

Other departments that may be interested in the proposed course: Civil Engineering, Chemical Engineering, Mechanical Engineering, Earth Sciences, Environmental Science and Engineering, Physics.

- 7. **Proposing Instructor(s):** Prof. Praneet Prakash (KSS)
- 8. Course Description: Global warming and climate change pose direct threat to life as we know it by endangering health of living systems through extreme heat, pollution, spread of diseases, loss of biodiversity while also affecting food and water security. Tackling the climate vulnerabilities systems requires an interdisciplinary approach to ensure their continued sustainability. In this course students will learn quantitative approach to analyse microscopic phenomena and large-scale interactions that govern sustainability of living systems. The course integrates two core areas, Biophysics and Ecology into a holistic framework to address real-world case studies on Sustainability.

A) Objectives:

- Understand the interdisciplinary nature of emerging threats on living systems sustainability.
- Develop data-driven solutions to address pressing sustainability challenges.
- Construct ab initio dynamical models for climate vulnerabilities.
- Deliver engineering solution to tackle emerging water pollutants such as microplastics.
- Design experiments to explore the emerging research area of living materials.

B) Contents

S. No	Broad Title	Topics	No. of
			Lectures
1.	Fundamentals of	advection, active motion, diffusion	1
	Microscale		
	Dynamics		

2.	Diffusion and	linear diffusion (finite domain, infinite domain),	2	
	Growth	nondimensionalization, measurements (frap),		
		non-linear diffusion		
3.	Reaction-Diffusion	bistable systems, Fisher's equation	4	
	Systems			
4.	Spatial Instabilities	Turing instability, activator-inhibitor dynamics,	5	
		vegetation pattern		
5.	Living Matter in	microscale swimming (motility), chemotaxis,	3	
	Fluids	chemoreception, transport limits, Michaelis-		
		Menten Kinetics		
6.	Population	single population models, delay in population,	3	
	Dynamics	example (Blowflies), age structures, discrete		
		systems, logistic map, multi-species model		
7.	Health	epidemic models, role of vaccinations, SIR	5	
	Sustainability	model, excitable systems		
8.	Stochasticity in	single population, extinction, multiple	5	
	Population	population, Fokker-Planck equation		
	Dynamics			
9.	Sustainability Case	impact of climate change on vegetation	2	
	Study			
10.	Sustainability Case	sustainability of marine ecosystem	2	
	Study			
11.	Sustainability Case	microbial population under climate stress	2	
	Study			
12.	Sustainability Case	loss of biodiversity due to extreme climate	2	
	Study	events		
13.	Sustainability Case	assessing the impact of water pollutants on	2	
	Study	ecosystem health		
14.	Sustainability Case	Kelkar library fountain – Why so green?	2	
	Study			

C) **Pre-requisites:** Basic knowledge of Physics, Mathematics, and any engineering discipline, along with familiarity with differential equations and a programming language.

9. Textbooks

- a. J. D. Murray, Mathematical Biology, Volumes 1 and 2, Springer
- b. H. C. Berg, Random Walks in Biology, Princeton University Press
- c. R. May & A. McLean, Theoretical Ecology, Oxford University Press
- d. R. B. Northrop & A. N. Connor, Ecological Sustainability, CRC Press
- e. Additional references will be provided during the lectures.

 $*Personal\ copies\ of\ books\ are\ available\ with\ the\ instructor\ on\ request.$

praneet@iitk.ac.in

10. Any other remarks: Students from all engineering and science disciplines are welcome.

Prancet

Dated: 29/8/25	Proposer:					
Dated: 29/8/25	DUGC/DPGC Convener:	nll re				
	The course is approved	d / not approved				
	Chairman, SUG	C/SPGC				
Dated:						