SOURADIP PATRA

MTech (Industrial & Management Engineering)

in linkedin.com/in/souradip-patra/

ACADEMIC DETAILS			
YEAR	QUALIFICATION	EDUCATIONAL INSTITUTION	PERFORMANCE
2019-Pursuing	M.Tech (Industrial & Management Engineering)	Indian Institute of Technology, Kanpur	7.9* (CPI)
2014-18	B.Tech (Mechanical Engineering)	Kalyani Govt. Engg. College, West Bengal	9.18
2014	Class XII (WBCHSE)	Onda High School	91%
2012	Class X (WBBSE)	Onda High School	92.71%

*upto 3rd semester

SCHOLASTIC ACHIEVEMENTS

- Secured All India Rank 416 in GATE-2019 (Mechanical) amongst 167376 students, conducted by IIT MADRAS
- Received scholarship from Indian Oil Corporation Ltd. under Indian Oil Educational Scholarship Scheme-2014

SUMMER INTERNSHIP

Data Science Intern at Harvesting

(April'20-June'20)

Objective: To prepare chatbot in multiple languages (English, Hinglish, Hindi)

- Objective of the project was to create a **Chatbot** to communicate with farmers and deploy it on **Whatsapp**
- Used feature of Dialogflow to create chatbot like Agent creation, intent, entity, training, integration etc
- Trained bot by giving every possible user expression and fetch the details of farmers
- Deployed the Chatbot in Whatsapp using Twilio

ACADEMIC PROJECT	S			
	Yellow Taxi Demand Prediction in New York City	(Sep'19-Nov'19		
Data Mining and	Predicted taxi demand for New York city from the given dataset of 19 features			
Knowledge	Performed Data visualization, Data preparation using K-Means Clustering and Time Binning			
_	Applied different models such as simple moving average, weighted moving average, Exponential weighted moving average			
Discovery	Applied Regression models were Linear Regression, Random forest Regressor and Boosting			
	 Models were tuned and compared on MAPE metric and MAPE was 0.1293 of Exponential weighted move 	ing average		
	Telecom Customer Churn Prediction	(May'20-June'20		
	• The dataset contains 21 features such as "internet", "online security", "paperless billing" etc			
	• Applied SMOTE and RFE (Recursive Feature Elimination) to improve the baseline model to predict churr			
	Logit and Probit models were used for classifying the churn class			
	Both the models had similar kind of results and best model was Logit model			
Applied Machine	Reported an accuracy of Logit model was about 79%, Precision 73.8% and Recall 62.4%, AUC of ROC wa	s 0.83		
Learning	Netflix Movie Recommendation System	(Mar'20-April'20		
Ū	The dataset contains MovieID followed by UserID, Rating and Date			
	Performed preliminary data analysis and temporal train-test splitting and created sparse matrix from dataframe			
	From sampled training data created 13 initial features for regression such as UAvg, MAvg, GAvg etc			
	Applied different models such as Surprise baseline model, Surprise KNN model, Matrix Factorization techniques			
	Applied XGBoost Regressor with surprise models and got the least RMSE 1.0726 from Matrix Factorization			
	Analysis of the Factors Affecting Sales Price of House in King County, USA	(Jan'20-Feb'20		
	Carried out multivariate statistical regression analysis to study the factors influencing house prices with	19 features		
	Determined correlation matrix and checked for Multicollinearity and performed EDA			
	Breusch-Pagan test showed there was heteroskedasticity in the data, hence Heteroskedastic robust errors were used			
Statistical	Adjusted R-squared with and without robust error was 0.694 & 0.676 respectively			
Modelling for	Statistical Analysis on Factors influencing Life Expectancy Panel Dataset	(April'20-June'20		
Business Analytics	The dataset consists of 193 countries from year 2000-2015 with 22 Features			
	Checked Heterogeneity across countries (or entities) and years			
	Applied Panel Models were Pooled regression, Entity & Time Fixed effects regression and Random Effects regression			
	The highest Adjusted R-squared was 0.9482 with Binary regressor model for entities			
	Conducted Hausman test and test for checking Panel effect			
COURSEWORK AND				
<u> </u>	Data Mining and Knowledge Discovery Statistical Modelling for Business Analytics Probability & Statistics Applied Machine			
Relevant Courses	Learning Introduction to Computing Operations Management Business Management using Cloud E- Supply Chain			
neierani douises	Management Operations Research for Management			
_ , , , , , , , , , , , , , , , , , , ,	Python (NumPy, Pandas, Matplotlib, Seaborn, Scikit Learn, SciPy) SQL MS Excel			
Technical Skills	SQL for Data Science			
and Certifications				

POSITIONS OF RESPONSIBILITY

- Students' senate nominee at **Senate Curriculum Development and Monitoring Committee** (2019-20), IITK: Addresses the issue related to review and revise of both content and conduct of courses
- Serving as a teaching assistant to an IME course Statistical Modelling for Business Analytics (Sep'20-Present): Managed and provided support to 64 students and administered exams
- Student Member at Indian Society of Heating Refrigerating and Air-Conditioning Engineers, Kolkata Chapter during the year 2016-17