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This paper aims to apply two methods namely, Vortex
Method and Higher Order Spectral Method to study the wave
breaking and wave interaction. The breaking of shallow water
gravity wave is performed using Vortex method, while the
interaction between two gravity waves is carried out using
Higher Order Spectral (HOS) method. In Vortex method an
interface defined by a density or velocity discontinuity is
modeled as a vortex sheet. It comprises of a finite number of
point vortices and the motion of these point vortices dictates
the evolution of the interface. The simulation of wave breaking
involves interaction between two interfaces, one is the free
surface and the other is the bottom surface which is fixed. The
interaction between the point vortices on both the interfaces
causes the wave to break. The latter part of this paper is about
the application of Higher Order Spectral method to study
the interaction between a surface wave and an interfacial
wave in a two layered density stratified fluid. This is a highly
computationally efficient pseudospectral method to study the
wave evolution and wave interactions.

Index Terms—Vortex method, Vortex sheet, Singularity, Point
vortex, Higher order spectral method

I. INTRODUCTION

Water waves such as gravity waves propagate with or
without dispersion depending on whether the wavelength is
comparable to the depth of the sea as long as their amplitude
is small. On reaching the shallower waters if the amplitude
of the wave is comparable to the depth then the wave breaks
due to its interaction with the bottom. In this paper we model
the wave breaking phenomena by considering an interaction
between a free and fixed interface. We consider fluids to be
incompressible, irrotational and inviscid. The free interface
has a density and perturbation velocity discontinuity which
results in existence of vorticity at the free interface and we
can model it as a vortex sheet comprised of a finite number of
point vortices. The major question in this analysis is how the
bottom topography which is fixed can be modeled as a vortex
sheet, since above the bottom interface the fluid has a velocity
generated by the point vortices on the free interface and below
it the velocity has to be zero it has a velocity discontinuity and
hence can be modeled as a vortex sheet. The prime difference
in considering one of the interfaces fixed is that the velocity
normal to the fixed interface has to be zero and there is no
separate evolution equation for the vortex strength of the fixed

interface like we have for the free interfaces which will be
discussed in the subsequent section. The vortex sheet strength
of the fixed interface depends on the vortex sheet strength of
the free interface and itself and hence we must solve iteratively
for it. The methodology used in this paper is applicable to both
linear and non linear waves and with the proper initial con-
ditions we can model a shallow water gravity wave traveling
with a constant phase speed of

√
gH (where g is acceleration

due to gravity and H is the water depth) or the breaking of
a non-linear surface gravity wave when they reach shallow
waters. Vortex methods can be used to simulate a variety of
phenomenon and the advantage of this method is that there is
no need to solve for the whole domain, only the interfaces are
studied. The breaking of a non-linear wave due to the effect of
bottom topography was also modeled by [Baker et al. (1970)]
but our analysis is mathematically simpler and intuitive.
Similar work on non-linear waves has been done us-
ing more conventional methods by [Chan and Steet (1970)],
[Longuet-Higgins and Cokelet (1976)] etc.

Further, we have also studied the interaction between two
waves in a two layered density stratified fluid using Higher
Order Spectral method in a similar way as described by
[Alam et al. (2009)]. This method is fast, efficient and accu-
rate which relies on perturbation expansions along with the
Fast Fourier Transform. However, a limitation of the method
is that it is Eulerian, thus, making the study of wave turning
or wave breaking difficult. Nevertheless, the method is very
powerful in the study of wave-wave interaction or wave-
bottom interaction. The basic idea of spectral method to use
a number of Fourier modes to study the evolution of a wave.
This is done up to any order M for the perturbation expansion
of the velocity potential. Using the appropriate Kinematic and
Dynamic boundary conditions, the boundary value problem is
solved at every time step along with marching forward in time
using a suitable time integration scheme.

II. VORTEX METHOD
A. Methodology

Interfaces considered in this study could have a density
discontinuity or a velocity discontinuity or both due to which
vorticity exists at these interfaces. Apart from the interfaces
fluids are considered irrotational, incompressible and inviscid.
Inviscid approximation is crucial in this study since existence
of vortex sheets is not feasible in viscous fluids due to
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existence of infinite shear stresses at the interfaces. The system
is governed by Euler equation away from the interfaces

ai = − 1

ρi
∇pi − ĝj (1)

Where i = 1, 2 denotes fluid above and below the interface
respectively. The interfaces have been modeled as vortex
sheets and have an associated vortex sheet strength defined as
the difference in the tangential velocity across the interface.

γ = (u1 − u2) · s (2)

Here u1,u2 are the velocities of the fluid above and below
the interface and s is the unit tangent vector to the interface.
The evolution of interface is studied with the help of the
Lagrangian velocities of the point vortices comprising the
interface. The interface velocity is a weighted sum of the
velocities above and below the interface given as:

q = U +
1

2
γαs (3)

dX

dt
= q (4)

Where q is the lagrangian velocity of the interface, U is
the average of the velocities above and below the interface
U = 1

2 (u1 + u2) and α is the weighting parameter ( when
α = 1,−1 the interface moves with the velocity of the upper or
lower fluid respectively). X is the position vector representing
the interface which has been parametrized using the arc length
coordinate (X = x(s, t)̂i + y(s, t)̂j).

The average velocity U can be evaluated for an array of
point vortices using the Biot-Savart law:

U (s, t) =
1

2π

∫ +∞

−∞

k̂× (X (s, t)− X (s̃, t))

|X(s, t)− X(s̃, t)|2
γ(s̃, t)ds̃ (5)

The Biot-Savart law for a periodic boundary condition (as is
present in the interfaces we consider) reduces to Birkhoff-Rott
equations:

ul − ivl =

M∑
k=1

i

2λ

∫ λ

0

γ̃k cot(
π(zl − z̃k)

λ
)ds̃k (6)

Here u,v are the horizontal and vertical components of U, z
is the complex position of the interface z = x(s, t) + iy(s, t)
, λ is the wavelength of the interface and the indices k and l
represent the kth and lth interfaces respectively . This equation
can be understood as the velocity of a point vortex on some
interface is due to the velocity induced by all the vortices
on that interface superposed with the velocity induced by the
point vortices on all the other interfaces. As can be seen in
equation (6), for evaluating the velocities at some time t we
need the values of vortex strength at that time. This means that
we also need an evolution equation for the vortex strength of
the interface which can be derived using the Euler equations
and the kinematic conditions for acceleration of the fluid above
and below the interface respectively. From the Euler equations
we can get the following relation for accelerations:

A(a1 + a2) · s + 2Agj · s = (a1 − a2) · s (7)

Here A is the Atwood number for the interface given by
A = ρ2−ρ1

ρ2+ρ1
, a1,a2 are the accelerations of the fluid above

and below the free interface. Now we also have the kinematic
conditions for the accelerations given by:

ai =
dui
dt
− 1

2
γ(α± 1)

∂ui
∂s

(8)

Where the +(-) sign is for i = 2(1) . Using equations (7) and
(8) we can get the evolution equation for vortex strength of
free interface interface.
dγ

dt
= 2A

dU
dt
· s +

α+A

4
(
∂γ2

∂s
)− (1 +αA)γ

∂U
∂s
· s + 2Ag

∂y

∂s
(9)

Numerical simulation of the interfaces require that we consider
interfaces to be comprised of a finite number of point vortices.
Thus we need to discretize equation (6) (Birkhoff-Rott). The
circulation strength of point vortices is given by:

Γj = γj∆sj (10)

Equation (9) is the evolution equation for the vortex strength of
the free interface. The vortex strength of the fixed bottom can
be evaluated using the fact that the velocity below the interface
is zero and that the velocity above the bottom is only present
in the direction tangential to the bottom interface.

γ = (u1 − 0) · s (11)

Where u1 is the velocity above the fixed interface and the
velocity below the interface is 0. Now since the Birkhoff-Rott
equation evaluates the average velocity at the interface we have
U = u1 + u2/2 = u1/2 . So, the vortex strength of the fixed
interface becomes:

γ = 2(U) · s (12)

But the principal vortex velocity U is itself calculated from
the vortex strengths of both free and fixed interfaces as given
by equation (6). Since the equation for vortex strength of the
bottom interface is implicit in nature we must solve for vortex
strength of the bottom interface iteratively.

B. Numerical technique
The interaction between a free and fixed interface is de-

scribed by the system of equations (3),(4),(6),(9) and (12)
which represents an initial value problem hence the knowl-
edge of the initial shape of the interfaces and their vortex
strengths is imperative which will be discussed in the sub-
sequent section. Suppose we know the initial conditions, we
can calculate the velocities at the first time level using the
vortex strengths and guess the velocity and vortex strengths
of free and fixed interfaces respectively at the second time
level. Now we integrate equation (9) using Euler scheme and
express the acceleration term as a forward difference in time
dU
dt = U(2)−U(1)

∆t and using the vortex strength at second
time level we can update the free interface using trapezoidal
scheme. Now in the Birkhoff-Rott equation we use updated
values of vortex strength of free interface and guess values
of vortex strengths of the bottom interface and calculate the
velocities of the point vortices on the bottom interface and



using equation (12) we can update the vortex strength of
bottom interface. Now that we have updated values of vortex
strengths of both free and fixed interfaces we can calculate the
updated velocities of the free interface and apply an iterative
procedure for convergence of velocity of free interface and
vortex strength of the bottom.

The methodology at some general time level n is similar
to the above described technique except that we don’t need
to guess velocities at n+1 level instead we can estimate the
acceleration term in equation (9) at the previous time level
n-1 as dU

dt

n−1
= U(n)−U(n−1)

∆t . Now after getting some value
of γf at n+1 we can update the interface. Now we can guess
vortex strength of bottom interface γb at n+1 and using this and
updated vortex strength of free interface γf we can calculate
velocity at the bottom interface and update γb using equation
(12). From the updated values of interface position and vortex
strengths (γf and γb) we can get updated velocities of the free
interface at n+1 and now we can iterate until convergence of
acceleration but we will use central differencing for accelera-
tion at time level n dU

dt

n
= U(n+1)−U(n−1)

2∆t .

C. Initial conditions
The interaction between free and fixed interface is governed

by system of equations described by equations (3),(4),(6),(9)
and (12) which represents an initial value problem thus
for solving this system we require the knowledge of the
initial shape of the interfaces and the vortex strength as-
sociated with each of the interfaces.The initial conditions
for a non-linear wave have been used from the work of
[Baker et al. (1970)].The initial shape of the free and bottom
interface are as below:

yf = a cos(x)

yb = −d+ b cos(x)

The corresponding initial vortex strengths of the free and
bottom interface are:

γf = a(tanh(d))
−1
2 (1 + tanh(d)) cos(x)

γb = 0

Here a and b are the amplitudes of the free and bottom
interface respectively and d is the depth of the water. For
simulating wave breaking the amplitude of the free interface
disturbance has been kept comparable to the depth of water.
The values of the different parameters are a = 0.5, b = 0
and d = 1. The vortex strength of the bottom fixed interface
can be assumed to be zero initially and it will itself take the
appropriate values as we iterate for it in the next time step.

III. HIGHER ORDER SPECTRAL METHOD
A. Schematic of the Domain

In Fig 1., the surface wave and the interfacial waves are
at z = 0 and z = −h1 respectively along with the bottom
at z = −h1 − h2. The wave displacement from the mean
position is given by η1(x, t) and η2(x, t) respectively. Further,
we have velocity potentials η1(x, z, t) and η2(x, z, t) defined

Fig. 1. Domain

in the two regions assuming irrotational flow. The elevation of
bottom from its mean position is ηb(x). Finally, the density of
the top and the bottom fluids are ρ1 and ρ2 respectively.

B. Methodology and Numerical Technique
Higher Order Spectral methods are a class of computation-

ally efficient methods for studying waves and wave interaction
developed by [Dommermuth and Yue (1987)]. This method
employs solving the Initial Boundary Value Problem using
Fourier Basis Functions along with the use of Fast Fourier
Transform (FFT) and Perturbation Expansion. This method
can as well be employed for two layered fluid having differ-
ent densities [Alam et al. (2009)]. For an irrotational and an
incompressible flow, we have the continuity equations in terms
of velocity potential φ as,

∇2φ1 = 0 for −h1 + η2 < z < η1 (13)

∇2φ2 = 0 for −h1 − h2 + ηb < z < −h1 + η2 (14)

Kinematic Boundary Conditions-

η1,t + η1,xφ1,x = φ1,z at z = η1 (15)

η2,t + η2,xφ1,x = φ1,z at z = −h1 + η2 (16)

η2,t + η2,xφ2,x = φ2,z at z = −h1 + η2 (17)

ηb,xφ2,x = φ2,z at z = −h1 − h2 + ηb (18)

The Dynamic Boundary Conditions respectively at the sur-
face ant the interface are

φ1,t +
1

2
(φ2

1,x + φ2
1,z) + gη1 = 0 (19)

ρ1[φ1,t+
1

2
(φ2

1,x+φ2
1,z)+gη2] = ρ2[φ2,t+

1

2
(φ2

2,x+φ2
2,z)+gη2]

(20)
The Kinematic boundary conditions provide the evolution

equation for surface and interface elevations whereas, cor-
responding potentials evolve using the dynamic boundary
conditions.

Introducing a surface potential and an interface potential,



φS1 (x, t) = φ1(x, η1(x, t), t)

φIu/l(x, t) = φu/l(x,−h1 + η2(x, t), t)

Further, we have Density ratio,

R =
ρ1

ρ2

Finally, we obtain the set of Evolution equations,
by using the variable transformation as described by
[Zakharov and Cokelet (1968)].

η1,t = −η1,xφ
S
1,x + (1 + η2

1,x)φ1,z (21)

η2,t = −η2,xφ
I
2,x + (1 + η2

2,x)φ2,z (22)

φS1,t = −gη1−
1

2
(φS1,x)2 +

1

2
(1+η2

1,x)φ2
,z (23)

ψI,t =
1

2
(R(φ1,x)2 − (φ2, x)2)

+
1

2
(1 + η2

2,x)(φ2
2,z −Rφ2

1,z)− gη2(1−R) (24)

At every time step, φ and η is specified for each surface.
Therefore, their horizontal derivatives are easily evaluated.
However, the vertical velocity i.e. φ1,z and φ2,z can’t be
obtained without solving the boundary value problem because
the values of velocity potential is not known below the
surface/interface making it difficult to calculate the vertical
derivatives of the velocity potential.

In order to solve the Boundary Value Problem, we do a
perturbation expansion of φ1 and φ2 as,

φ1(x, z, t) =

M∑
m=1

φ
(m)
1 (x, z, t)

φ2(x, z, t) =

M∑
m=1

φ
(m)
2 (x, z, t)

Here, the superscript (m) denotes the order of steepness (ε).
Using the normal mode form of Velocity Potentials, we have,
for each m,

φ
(m)
1 =

N−1∑
n=−N

{A(m)
n (t)

cosh kn(z + h1)

cosh (knh1)

+B(m)
n (t)

sinh kn(z + h1)

cosh (knh1)
}eiknx (25)

φ
(m)
2 =

N−1∑
n=−N

{C(m)
n (t)

cosh kn(z + h1 + h2)

cosh (knh2)

+D(m)
n (t)

sinh kn(z + h1 + h2)

cosh (knh2)
}eiknx (26)

Using the boundary conditions along with the expansion
of φ viz. equation (25) and (26), we obtain the values of

modal coefficients A, B, C and D at every time step as
described in the paper by [Alam et al. (2009)] After obtaining
the coefficients, we have the value of Velocity potentials at all
the points. Therefore, the surface and interface velocities along
with the other spatial derivatives of velocity potential can be
easily calculated. Using these at every time step, we march
forward in time using 4th order Runge-Kutta time integration
scheme.

C. Initial Conditions
Initially, we have taken two Stokes wave of steepness ε =

0.03, one in the interface of wave number 4 on the surface
and other of wave number 6 in the interface. The density ratio
taken is equal to 0.9. The distance between the two waves is
kept as such so that the waves can feel the effect of each other,
which implies that the eigenfunctions of either waves do not
die down to zero at the location of the other wave. However,
the bottom is substantially far away, making the fluid to behave
like deep water (kH >> 1) so that the bottom has minimal
effect on the waves.

IV. RESULTS AND DISCUSSION
A. Vortex method

The numerical computations for the interaction between a
free and fixed interface have been performed for an Atwood
number of 1.0 which could represent an air water interface,
the amplitude has been kept comparable to the depth in order
to simulate wave breaking. If the computations are done for a
small amplitude wave with the initial conditions derived from
the linear theory it does move with a constant phase speed of√
gH although that is not the focal point of this paper. The

results for wave breaking for Atwood number equal to 1.0 are
shown in figure 1, it can be clearly seen that at t = 4.9 s the
wave has a plunging breaker which is as expected.

Fig. 2. Initial shape of the interface and configuration at t = 4.9 s, At =
1.0

B. HOS method for wave interaction
For the case when the density ratio of the fluids are similar,

here R=0.9, we see that the interface of wave number 4
assumes a shape which is similar to that of the surface wave
meaning that although the interfacial wave was initially of
wave number 4, later the most dominant wave number is 4.



Although the surface wave starts to beat due to the effect of
the interfacial wave, there is not much appreciable change in
its shape. The most dominant wave number of the wave shape
remains the same as it was initially.

Fig. 3. Initial shapes of the interfaces (vertical scales are exaggerated)

Fig. 4. Wave shapes at t=6.6s (vertical scales are exaggerated)

V. CONCLUSIONS

The present paper aims to study wave breaking and wave
interactions using vortex and higher order spectral methods
respectively. The results presented for the breaking of a non-
linear wave due to the effect of bottom topography using vor-
tex methods correctly represents the phenomenon of breaking
of a wave that is seen in nature. When the amplitude of the
free surface disturbance is small compared to the depth then
we observe a propagating wave with a constant phase speed
of
√
gH but the initial conditions in that case are not the same

as what has been presented here, the initial conditions then
are derived using linear theory but that is not the focal point
of this study. As for the HOS method, the interaction between
two gravity waves in a two layered stratification is studied.
The density ratio closer to 1 results in the interfacial wave
being dominated over by the surface wave.
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