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Abstract 

Stability of two layered long and narrow water bodies like 

lakes and reservoirs to 2D normal mode perturbations is 

analysed. The inviscid stability of these water bodies is 

studied using a non-Boussinesq framework. The base state 

velocity profile being analysed is obtained when only the 

lighter upper-layer is undergoing a circulation, such 

circulation takes place when wind forcing is insufficient to 

induce a circulation in the heavier bottom-layer. The 

interfaces are characterized by the respective bulk 

Richardson numbers. Our analysis reveals instability over 

some range of wavenumbers and bulk Richardson 

numbers. 
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I. INTRODUCTION  

The effect of wind on lakes has been studied by researchers, 

particularly the effect on long and narrow lakes (Heaps 

&Ramsbottom [1], Bye [2]). Long and narrow lakes afford us 

many simplifying approximations. Due to being narrow we can 

ignore Coriolis effect (Hutter [3]). Coriolis effect becomes 

important when the width of the water body is comparable to 

the Rossby deformation radius. The lake geometry is assumed 

to be rectangular for simplicity. Wind flow is taken along the 

length of the lake, due to this transverse flow can be ignored. 

Presence of a sharp thermocline in the lake gives rise to two-

layered density stratification. The time-scale over which density 

stratification changes is the seasonal time-scale, while the wind 

changes on very shorter time-scales of the order of hours. On 

shorter time-scales of wind changes the background density 

stratification is essentially treated as quasi-steady. Mixing can 

be ignored on these shorter time-scales. As demonstrated by 

Heaps & Ramsbottom [1], working in the small deflections 

regime leads to non-linear effects being ignored, this greatly 

simplifies the problem. Using other simplifying assumptions 

like uniform and constant properties like viscosity and density 

in each layer one can arrive at the velocity profiles in each layer 

in terms of the wind forcing. 

Forcing by wind in a simplified sense can be assumed to 

work like a two-layered lid driven cavity flow. If this 

assumption is followed, then the rectangular cavity will consist 

of a stable density stratification of two layers, over which a lid 

is dragged along the top surface. Such type of arrangement can 

set up a single circulation in the upper layer in the system. In 

this paper we will analyse the stability of representative base 

state profiles that are step up in shallow lakes where the depth 

of each layer is around 10 metres and the lake is a few 

kilometres long. For simplicity we can assume that the wind 

flowing over the lake has a constant velocity (U1). Study of 

stability of lakes has applications in mixing of lakes and other 

similarly structured natural or artificial water bodies. Mixing in 

such water bodies affects the distribution of salt, heat, 

momentum and other chemical tracers such as pollutants and 

dissolved gases like oxygen which plays an important role in 

the health of aquatic flora and fauna. Classically instabilities are 

thought of as one of the mechanisms through which a transition 

takes place from laminar flow to turbulent flow (Drazin [4]). 

The present study may lead to a better understanding of the 

enhanced mixing that is caused by the instabilities which are 

taking place in lakes.  Enhanced mixing can generate higher 

intensities of turbulent motions. By this present study we aim at 

trying to answer some of these issues. 

II. METHODOLOGY 

 

 
Fig. 1: Layout and base state profiles. Velocity undergoes a 

jump at the interface of zone II and III 
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Wind forcing is assumed invariant over the time-scales of 

the rest of the processes. Fluid is assumed to be incompressible, 

2D and inviscid. To model the process we use Euler momentum 

equations along with continuity equation and material 

conservation of density.  We are ignoring transverse flow in the 

narrow and long lake, implying that the flow is 2D. Considering 

a flow in the x-z plane we have  
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All the above four equations are applied to both the layers of the 

water body. Density difference between air and top layer water is 

quite high therefore one cannot make use of the Boussinesq 

approximation. Boussinesq approximation can be used when the 

density differences are small, it neglects the variation of density 

in inertial terms and its effect is only considered in the terms, 

where the density variation is amplified by gravity. This leads to 

the filtering out of the sound waves in the medium (Turner [5]). 

Boussinesq approximation is applied at interface between the 

lighter top water layer and the heavier bottom water layer. We 

linearize the equations (1-4) about the base state horizontal 

velocity and density given by (5) and (6) respectively.  
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(6) 

Following the seminal approaches outlined by Taylor [6] and 

Goldstein [7] we aim to obtain a single equation in terms of 

eigenfunctions of the vertical velocity. On linearizing and 

assuming normal mode perturbations of the form

ˆ ( ) exp( ( ))z i x ct   we obtain the following non-Boussinesq 

Taylor-Goldstein equation. In the normal mode form, the ̂ is the 

eigenfunction of quantities like density, velocity and pressure. 

From the form of normal modes we can see that exponential 

growth will occur if Im(c) is non-zero, and the corresponding 

growth rate being αIm(c).  

2 2
2

2 2

ˆ
ˆ ˆ[( ) ]

ˆ
ˆ ˆ[( )( ) ] 0

d dw dU g
U c w w

dz dz dz U c

d w d U
U c w w

dz dz



 

  


    
                                                     

(7) 

Here U,  are base state velocity and density respectively; ŵ is 

the vertical velocity eigenfunction; c,  are the wave speed and 

wavenumber respectively. Equation (7) obtained is similar to the 

one obtained by Barros and Choi [8] ,[9]. Solving equation (7) in 

zones I,II, and III (see fig. 1) and applying pressure continuity 

and kinematic condition across the interfaces we obtain a quartic 

(in wave speed, c) dispersion relation. The interface between 

zone I and II is characterised by bulk Richardson number J1, and 

that between zone II and III is characterised by bulk Richardson 

number J2.  Bulk Richardson number is the ratio of buoyancy 

term and velocity gradient term (Turner [5]). The dispersion 

relation is solved numerically to generate growth rate plots [10]. 

Some contour plots for the growth rate are shown in the results 

section.J1 and J2are defined as given below in equation (8) and 

(9), respectively.  
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For simplicity we can assume that
1

 to be negligible as compared 

to
2

 , this stands true because density of air is orders of 

magnitude small as compared to the density of water. Such 

simplification is also done in case of water waves. Bulk 

Richardson numbers can be combined to give a stratification 

parameter, 1 2
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R 
ρ2 

(kg/m
3
) 

ρ3 

(kg/m
3
) 

95 

 

971.82 982.03 

983.20 993.54 

285 

 

992.22 995.70 

995.65 999.14 

Table 1: Some representative values of density and stratification 

parameter, R  
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III. RESULTS 

Results for some representative values of stratification parameter 

R are presented below. Density stratification can be present due 

to any stratifying agent that has long time scales of diffusion and 

advection.  

 

 

 

 

 
 

IV. DISCUSSION AND CONCLUSIONS 

As can be seen from Fig.2 and Fig.4, the normal mode 

perturbations undergo exponential growth. Strong stable 

stratification requires large wind forcing and inertia to 

overcome the stabilizing effect of gravity, which tries to keep 

the denser fluid at the bottom (see Taylor [6] and Goldstein 

[7]). For Kelvin-Helmholtz instability (KH) to occur, a jump in 

the velocity profile is needed (Drazin [4]). In our system there 

is a presence of jump in the velocity, so KH will occur. In fact 

the most energetic instability in our system is the KH. In KH 

instabilities the growth rate has an approximate direct 

correlation with wavenumber (α), this behaviour is evident in 

our results (see Fig.2 and Fig.3). Classical KH instabilities are 

stationary instabilities, that do not have any wave propagation 

speed (Drazin [4]). In our system the KH type instability is 

undergoing propagation since the mean speed of the interface is 

not zero. The wind speeds required for instability are feasible 

and are shown in Table 2, the wind speeds are also given in 

terms of Beaufort scale which is an empirical scale used to 

describe  and report wind speeds. 

Along with KH, there is a presence of less dominant 

instability with growth rate that is orders of magnitude smaller 

than the KH mode growth rate, contour plot for which is shown 

in Fig.3.  
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Max. 

Growth 

Rate R 

Wavelength                                 

(m) 

U1  

(m/s) 

U1  on 

Beaufort 

Scale 

0.0439 95 15.52 10.26 5 

0.0019 285 8.22 5.92 4 

Fig. 2: Contour plot for growth rate vs. J2 for stratification 

parameter, R =95 for the dominant KH mode 

Fig.4 : Contour plot for growth rate vs. J2 for stratification 

parameter, R =285 for the dominant KH mode 

Fig. 3: Contour plot for growth rate vs. J2 for stratification 

parameter, R =95 for the less dominant mode 

Table 2: Maximum growth rate, wavelength of the perturbations, 

and the wind forcing required for the less dominant mode 


