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Abstract 

This paper aims to study the evolution of interfaces of a jet 

stream flowing in a stationary medium. The medium and 

the jet stream have been considered inviscid, surface 

tension effects have been neglected and there is a density 

jump across the interface between the stream and the 

media, within the jet stream and outside in the surrounding 

media density remains uniform. Due to discontinuity in 

velocities across the interface there exists vorticity at these 

interfaces and hence they have been modelled as a vortex 

sheet, everywhere else the system is assumed irrotational. 

The motion of the interfaces has been studied through the 

evolution of these vortex sheets which have been assumed 

to be comprised of a finite number of point vortices. The 

results indicate that the interface develops more roll ups for 

smaller Atwood numbers. 
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I. INTRODUCTION 

A jet of fluid flowing in a stationary media develops an 

instability at the interface due to the fact that it is a parallel shear 

flow. In such a system there is a sudden jump in velocity across 

the interface which leads to development of vorticity at the 

interfaces. For studying the time evolution of the interfaces we 

can model them as vortex sheets. A vortex sheet can be defined 

as a surface of infinitesimally small thickness at which all the 

vorticity is concentrated. In our analysis we will assume that the 

flow is irrotational everywhere in the flow. We also assume the 

fluids to be inviscid since there is a sudden jump in velocity 

across the interfaces of the jet and a finite viscosity of the fluid 

will mean that there is an infinite shear stress at the interface. So, 

we assume inviscid fluids because the existence of a vortex sheet 

is not feasible in viscous fluids. Also, we have not considered 

surface tension effects in this study. 

  Now since we are studying a 2D system the sheet reduces to a 

curve which we model as an array of point vortices. In a 

system of point vortices the motion of each of the vortices is 

due to the vectorial sum of the velocity induced at its location 

by the remaining vortices. Sohn et al. [1] studied the evolution 

of interface in Kelvin-Helmholtz instability, they did the 

modelling of the interface by assuming it to be an array of 

point vortices. Sohn [2] also applied the concept of modelling a 

vortex sheet as an array of point vortices in his study of the 

Rayleigh-Taylor instability. 

The numerical computation for the interface becomes 

complicated due to the non-linear structures and steep vortex 

strength around the vortex cores. The computation of velocity 

of point vortices may develop singularity as shown by Moore 

[3]. For stable computations a desingularization parameter 

(Krasny [6]) is used in the velocity calculations. Another issue 

with numerical computation is the clustering of the vortices 

around the vortex cores and diverging at the outside region 

which leads to poor resolution of the interface. 

A Study of fluid flowing in the form of a jet is important to 

many applications such as liquid issued from an orifice in 

diesel engines or from a fan spray nozzle. The breaking 

mechanism in these cases could be studied by inclusion of 

surface tension effects in a later study. Our aim in this paper is 

to perform accurate numerical simulation of the interfaces of a 

jet stream. The accuracy of the vortex method used by us lies 

in the fact that the evolution of the interface is studied in a 

Lagrangian manner rather than computation over a 2D grid. 

II. MATHEMATICAL FORMULATION 

A.  Vortex method 

We have two fluids let's say 1 and 2 which are on either sides 

of the two interfaces of the jet stream. Since we have assumed 

the fluids to be inviscid they will be governed by the Euler 

equations: 
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 [1] 

Here i=1,2 describes the two fluids. 

 

There is a discontinuity in velocity across both the interfaces 

which leads to development of vorticity at the interfaces. The 
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interfaces can be modelled as vortex sheets and their strength 

known as vortex sheet strength can be defined as: 

  suu

 21  [2] 

Where 1u


and 2u


are the velocities above and below the 

interfaces and s


is the unit tangent vector of the interfaces. 

Now the interfaces have been for the purpose of numerical 

computation assumed to be comprised of a finite number of 

point vortices. The motion of the interface has been studied 

through the motion of these point vortices. The Lagrangian 

velocity of the interface is taken to be a weighted average of 

the velocities of the fluid above and below it. 
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Here 
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21 uu
U


 
 is the average of the velocities above and 

below the interface and is known as the principal vortex sheet 

velocity. The parameter  is the weighting parameter and if 

we take it to be 1 then the vortices follow the upper fluid and 

for the value -1 the vortices follow the lower fluid. In our 

computations we taken its value as 0 so, the interface will 

move with the principal velocity. 

The motion of the interface can be described by the equation: 

q
dt

Xd 


  [4] 

Here the interface has been parameterized in terms of the arc 

length s. 

The principal velocity is dependent upon the vortex sheet 

strength of the interfaces and can be determined from the 

Birkhoff-Rott equation. 
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Here j=1,2 refer to the two interfaces. iyxz  is the position 

of the point at which the velocity is calculated in complex 

plane and yixz ~~~  is the position of the interfaces in 

complex plane. u and v are the horizontal and vertical 

velocities respectively. 

So, the velocities of the interfaces are dependent on the vortex 

sheet strength and hence we need an evolution equation of the 

vortex sheet strength in order to study the evolution of the 

interfaces. From the Euler equations we can derive that 

    saaAsaa
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A  is the Atwood number, the subscripts 1, 2 

denote fluids above and below the interfaces , 1a


and 2a


are 

the accelerations. Now these accelerations can be determined 

in terms of the vortex strength by using the kinematic 

conditions for accelerations of the fluid above and below the 

interface.  
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Here + and - sign is for i = 2 and 1 i.e. below and above the 

interface respectively. Using eqns. [6] and [7] we can derive 

the equation for evolution of vortex strength as: 
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a. Numerical procedure 

In the numerical simulation of the interfaces we assume that 

the interfaces are comprised of finite no. of point vortices  

located at X
N

i



0
 with vortex strength 

N

i 0
. The equation 

[5] with desingularization parameter in the discrete form can be 

written as: 
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here k and l denotes the interfaces and i, j denote the point 

vortices. Also here jkK represents the local circulation 

strength. 

Suppose we know the system at some time level n then we can 

solve for vortex strength at time level n+1 using eqn. [8], this 

equation also contains time derivative of velocity so, initially 

this term is estimated at previous time level n-1. After getting 

vortex strength at n+1 time level we update the interface and 

get its shape at n+1 level and then calculate the velocities at 

n+1 time level. Now we estimate the acceleration term in eqn. 

[8] with central difference 
t

nUnU
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 and iterate 

this step till the convergence of acceleration. 

The initial shape of the interfaces have been taken as a 

sinusoidal curve of wavelength 1, xay 2sin0 and an initial 

distribution for the circulation strength of the point vortices has 

been derived from linear theory : 
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III. RESULTS AND DISCUSSION 

 

The numerical computation of the evolution of interfaces has 

been done for an initial disturbance amplitude of 0.01 which is 

small enough for performing linear analysis initially. The domain 

can be selected according to the number of wavelengths that we 

want to simulate, in the results shown we have simulated two 

wavelengths. The surface tension has been ignored in our 

analysis although it can be studied later. The results presented 

here are for Atwood number A = 0.05 and we have considered 

two cases, case a) Initial Phase difference between the interfaces 

is 0  (Fig. 1) and case b) Initial Phase difference is  (Fig.2). If 

we start with initially smooth interfaces they stay smooth. It was 

observed that the formation of roll ups in the interfaces gets 

weaker with the increase of Atwood number as can be seen in 

Fig. 3 with At = 0.5. 

 
Figure 1 Configuration of the interfaces at t = 2.5 s (Phase difference = 0 and 

At = 0.05) 

 

Figure 2 Configuration of the interfaces at t = 2.5 s (Initial Phase difference = 

  and At = 0.05) 

 

Figure 3  Configuration at t = 1.4 s (Initial phase difference = 0 and At=0.5) 

In figures 1, 2 and 3 the amplitudes of the initial disturbance has 

been amplified to aid in visualising the phase difference. We can 

also see the variation of vortex strength at late times and see that 

in the region of vortex cores it grows steeper resulting in the 

need for additional measures like the desingularization 

parameter in velocity calculations. 

 

Figure 4  Variation of vortex strength with point vortex position (Initial 

Phase difference =     and at  t = 2.5 s At = 0.05) 

IV. CONCLUSIONS 

We have studied the evolution of the  interfaces of a jet 

stream in a stationary medium. The results presented in this 

paper can be validated with the work of Hashimoto et al. [4] and 

Minion et al. [5] on shear layers. The interface is unstable 

because of the generation of vorticity as a result of jump in 

velocity across the interface. As can be seen in the results a 

small initial sinusoidal disturbance grows and the interface rolls 

up at late times. The roll ups become weaker as we increase the 

Atwood number.  
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