
Quantum Distributed Computing Applied
to Grover’s Search Algorithm

Debabrata Goswami(B)

Indian Institute of Technology Kanpur, Kanpur 208016, India
dgoswami@iitk.ac.in

Abstract. Grover’s Algorithm finds a unique element in an unsorted
stock of N -elements in

√
N queries through quantum search. A single-

query solution can also be designed, but with an overhead of N log2 N
steps to prepare and post process the query, which is worse than the
classical N/2 queries. We show here that by distributing the computing
load on a set of quantum computers, we achieve better information the-
oretic bounds and relaxed space scaling. Howsoever small one quantum
computing node is, by virtue of networking and sharing of data, we can
virtually work with a sufficiently large qubit space.
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1 Introduction

Today’s digital computer is the cumulation of technological advancements that
began with the mechanical clockwork ideas of Charles Babbage in the nineteenth
century. However, it is surprising that logically, the high speed modern day com-
puter is not fundamentally different from its gigantic 30 ton ancestors, the first of
which were built in 1941 by the German engineer Konrad Zuse. Although comput-
ers nowadays have become more compact and considerably faster in their perfor-
mance, their primary execution methodology has remained the same, which is to
derive a computationally useful result via the manipulation and interpretation of
encoded bits. The underlying mathematical principles are indistinguishable from
those outlined in the visionary Church-Turing hypothesis, proposed in the year
1936, much ahead of the birth of the first computer. Bits, the fundamental units
of information, are the smallest working units of a digital computer and are classi-
cally represented as either 0 or 1 in a digital computer. Classical bits are recognized
by alluding to arbitrary thresholds of high (1) or low (0), and so each classical bit
is physically realized through a macroscopic physical system, such as the magne-
tization of a hard disk or the charge on a capacitor. Information is thus realized as
series of such bits, and these bits are manipulated via Boolean logic gates arranged
in succession to produce an end result [1].

The idea of quantum mechanical computational devices started in the late
1970s when scientists, while trying to determine the fundamental limits of com-
putation, realized that if technology continued to adhere to the Moore’s Law,
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the proposal of continuous diminishment in the circuits’ sizes on silicon chips
would eventually reach a point, where individual elements would not be larger
than a few atoms. At such sizes, the physical laws governing the behavior and
properties of such miniaturized circuits would inherently be not classical but
quantum mechanical in nature. Consequently, the question of whether a fun-
damentally new kind of computer could be devised based on the principles of
quantum physics surfaced.

Feynman was the first to make efforts to answer this question by producing
an abstract model in the year 1982, which showed the process of computation
using quantum systems [2]. He also explained the capacity of this machine to
efficiently act as a simulator for quantum physics. In other words, a physicist can
effectively carry out experiments related to quantum physics inside a quantum
mechanical computer. Later, in 1985, Deutsch reaffirmed Feynman’s assertion,
showing that any physical process could, in principle, be modeled perfectly by
a quantum computer, which eventually could result in the creation of a general
purpose quantum computer [3]. The search for important applications for such a
general purpose quantum computing machine began with this theoretical work
of Deutsch.

An important breakthrough came in 1994, when Shor [4] devised a method
for using quantum computers to crack factorization, an age-old problem in Num-
ber Theory. In this paper, Shor proposed the use of a group of mathematical
operations, organized and designed specifically for a quantum computer, to fac-
torize huge numbers extremely rapidly compared to conventional computers.
With this, quantum computing went from being a mere scientific curiosity to a
world-wide research interest.

A quantum computer exerts control over qubits by executing a series of
quantum gates, each a unitary transformation acting on qubits. These quantum
gates, when performed in succession, initially result into a complicated unitary
transformation of a set of qubits at some point. The measurements of the qubits
constitute the final computational result. However, on observation, qubits (simi-
lar to their classical counterpart, bits) show that they are of discrete nature and
are individually represented by two states. Such inherent similarities in the cal-
culation process of classical and quantum computers suggest that theoretically,
a classical computer should be able to simulate a quantum computer. Thus, a
classical computer should theoretically be able to do everything that a quantum
computer does, naturally raising questions pertaining to the need for a quantum
computer. Such questions were refuted by the fact that, though a classical com-
puter is theoretically able to simulate a quantum computer, it is highly inept,
and is practically incapable of performing most tasks that a quantum computer
can perform at ease. John S. Bell, for the first time, explained that correlations
among quantum bits differ qualitatively from the correlations among classical
bits [5], making the simulation of a quantum computer on a classical one, a
computationally hard problem that is practically irrelevant.

In fact, the amount of data processing required for a classical computer to
simulate even a hundred qubit quantum computer is prohibitive. A classical
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computer trying to simulate a quantum computer would have to work with
exponentially large matrices to perform calculations for each individual state,
which is also represented as a matrix; thus requiring an exponentially longer time
compared to the time taken by even a primitive quantum computer with only a
hundred qubits that exist in a Hilbert space of ∼ 1030 dimensions. Thus, a system
with only 100 qubits is impossible to simulate classically in any comprehensible
time frame as it represents a quantum superposition of as many as 2100 states.
Each of these states is classically equivalent to a single list of one hundred 1’s
and 0’s. Any quantum operation on that system—a particular pulse of radio
waves, for instance, whose action might be to execute a quantum gate operation
on the 50th and 51st qubits—would simultaneously operate on all the 2100 states.
Hence in a single step, in one tick of the computer’s clock, a quantum operation,
unlike the serial computers, computes not just on one machine state, but on
2100 machine states at a given time. Eventually, however, the system would
collapse to a single quantum state corresponding to a single answer, a single list
of one hundred 1’s and 0’s, dictated by the fundamental measurement axiom
of quantum mechanics [6]. This is an amazing observation as it showcases the
inherent disparity between quantum and classical computers in computational
matters as; what is achieved via the quantum parallelism of superposition by
a primitive quantum computer of 100 qubits would require a classical super
computer perform the operation simultaneously on ∼ 1030 distinct processors; a
practically impossible feat.

With the clever usage of the properties of superposition, interference, entan-
glement, non-clonability and non-determinism, exhibited by all quantum sys-
tems, a new form of “quantum parallelism” seems to be achievable, wherein
an exponential number of computational paths can be explored simultaneously
as opposed to sequentially in a single device. The challenge remains in fram-
ing computational questions in a way so that the most useful and probabilistic
answer is extracted. With the help of right algorithm, it is possible to use this
parallelism to solve certain problems in a fraction of the total time taken by a
classical computer. Such algorithms are notoriously difficult to formulate, and
till date, the most significant examples are Shor’s algorithm [4] and Grover’s
algorithm [7]. Shor’s algorithm allows for the extremely quick factorization of
large numbers, in polynomial time [4] as compared to exponential time required
by classical computers, which in principle, means that in solving some problems,
only quantum computers not conventional digital computers, can provide viable
solutions.

The other epochal quantum algorithm is the search algorithm [7,8,10], since
most of the computable problems in quantum computing can be transformed into
the problem of finding the correct answer amongst all the probable possibilities.
Taking advantage of the quantum parallelism, Grover’s algorithm searches an
unsorted database of N entries in

√
N attempts, while a conventional computer

would take an average of N/2 attempts. The discovery of the quantum error
correction is as significant as the algorithms taking advantage of the quantum
parallelism. In fact, the prospects for quantum computing technology would
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have remained bleak but for the quantum error correction development. Another
important aspect lies in the scaling issues related to quantum computing, which
questions the limitations of the current technologies in quantum computing and
hence derives continuous efforts towards newer, more reliable approaches. Even
conforming to the current practical situation of restricting ourselves to the use
of a small interacting molecular system, where only a small number of qubits
are available for computation; we show that it is possible to achieve higher
computational power provided that the computer systems, each consisting of
only a few atoms or molecules acting as compute nodes are networked. Here we
shall specifically explore the aspects of quantum distributed computing in light
of the possible implementations of Grover’s Algorithm.

2 Problem Statement

Grover’s search algorithm shows that a quantum mechanical system needs at
least O(

√
N) steps in order to identify a unique candidate satisfying a condition

out of an unsorted dataset of N candidates [7,8]. This quadratic improvement is
less optimal than the possible exponential improvement through quantum com-
puting [6,9] as is seen, for example, in Shore’s factorization algorithm [4], but is
highly significant as the search problem is a universal necessity in quantum com-
puting. Grover’s subsequent work [10] concludes that one can overcome O(

√
N)

bottleneck by making more elaborate queries, however, these increase the over-
head in preparing and post-processing queries by O(N log2 N) steps resulting in
a decreased efficiency compared to classical situations.

In this paper, we present a distributed quantum computing approach wherein
we propose to solve the classical search problem by performing the computation
on all the nodes in the network, thereby providing a better lower bound on the
resource usage of Grover’s Algorithm. We show that though we are still restricted
by the quadratic bound at best, we get more relaxed resource usage. This study
is motivated primarily by the fact that at present, achieving a large qubit space
is difficult, which is one of the basic bottlenecks for the effective implementation
success of many of the proposed algorithms. Given that decoherence [11] is a
major concern in quantum computing, the success of quantum teleportation [12]
could be utilized as an effective approach towards scaling quantum computing
power by establishing a network of smaller qubit space quantum computers and
distributing the computing load. The required coherent transfer of information
in the network could also benefit from recent developments in coherent optical
networking schemes [13]. This network of quantum computers would virtually
produce the required qubit space for the effective implementation of various
algorithms [14]. Another advantage of such networking lies in the high security
offered by quantum information processing [15].

3 Theoretical Model

Let us first outline the search problem and pose it mathematically to suit our
quantum distribution needs. Given a database of N elements (X1X2X3...Xn)
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with exactly one element satisfying a condition (say the required element is Xk).
Now there exists a function which knows that the element required is Xk but it
functions like a black box answering queries only as high/low. More explicitly if
asked whether Xi satisfies the condition it sets output signal high only if Xi = Xk

otherwise low. We will refer to such as element satisfying this condition as the
qualified element. The problem is to get the high signal in the minimum number
of queries. Classically, the optimal way is to ask questions that eliminate half
the elements under consideration with each question resulting in approximately
log2 N queries to reach the answer [7,8].

In Grover’s single query approach [10], he considered a quantum system com-
posed of multiple subsystems where each subsystem has an N dimensional state
and each basis state of a subsystem corresponds to an element in the database.
An appropriate single quantum query, pertaining to information regarding all N
elements, resulted in the probability of the state corresponding to the qualified
element(s) of each subsystem being amplified by a small amount. This small
difference in amplitudes was estimated by making a measurement to determine
that the element of the database in each subsystem corresponds to the element
indicated by the most subsystems is the qualified element, provided the number
of subsystems was sufficiently large. The sole purpose was to amplify the proba-
bility of qualified element by performing unitary operations on the subsystems.

Let us now discuss our design of distributed quantum computing wherein
we consider a network of quantum computers which can communicate through
quantum teleportation. The individual computing nodes in the network function
like subsystems as described in Grover’s approach earlier. Let us amplify the
probability of qualified element by sequence of unitary operations. We move
ahead by first applying selective inversion and then performing inversion about
selection operation.

Let us define the black box which answers the query as high/low (0/1) is
a function f(z) such that f(z) = 1 for qualified element, i.e.,Xk, otherwise
f(z) = 0 for all Xi, where i �= k. The work of Boyer et. al. [16] shows that there
exists a quantum circuit such that state |x, b〉 can be converted to |x, f(x) ⊕ b〉,
and if bit ‘b’ is placed in superposition of 1√

2
(|0〉 − |1〉), we keep intact the

amplitudes of all elements but the qualified element. The amplitude of qualified
element gets inverted. Next we apply inversion about average operator to amplify
the probability of the qualified item. The inversion about average operation is by
definition the unitary operation D : Dij = 2

N if i �= j; Dii = −1 + 2
N ; where D

can be shown to be physically implemented as a product of three local unitary
matrices [8]. Assume that D is applied to a superposition with each element
of the superposition having amplitude equal to 1√

N
, excepting one. Then, the

single component that is different has an amplitude of - 1√
N

. After the unitary
operation, the one that had the negative amplitude now becomes positive and its
magnitude increases to approximately 3√

N
; while the rest stay unchanged. This

would boost up the amplitude of the qualified element in each subsystem and
we have sufficiently large number of identical subsystems (say total η such sub-
systems) to observe for which element the probability is higher. Each subsystem
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has N dimensional state space and each of N basis states actually corresponds
to an element in the database. Consider each subsystem to have equal amplitude
in all N states. Thus the state vector for the system (which is a tensor product
of these η identical subsystems) would be (|S1S1S1...S1〉 + |S2S2S2...S2〉 + ...Nη

such terms) if S1, S2, ...SN denote N states.
Let us now query the database: whether the number of subsystems in the

state corresponding to the marked item is odd or even. If it is odd, the phase
is left untouched otherwise it is inverted. This is selective inversion as discussed
earlier. If Sk is the state which stands for the qualified element, we can write the
state vector as (|S1〉 + |S2〉 + ... + (−|Sk〉) + ... + |SN 〉)η. We then perform the
inversion about average operation independently on each of subsystems to boost
the amplitude of the qualified element. As we discussed before, inversion about
average operation allows us to amplify the probability of the state in negative
phase by a factor of 3 in the positive direction. Mathematically, therefore, we
can represent the vector state as (|S1〉 + |S2〉 + ... + (3|Sk〉) + ... + |SN 〉)η. We
cycle these steps for n times.

4 Results and Discussions

We will now try different values of n to see when it reaches an optimum.
For a generalized case: After n such cycles, the state vector can be written as

(|S1〉 + |S2〉 + ... + ((2n + 1)|Sk〉) + ... + |SN 〉)η. The probability of obtaining the
basis state corresponding to the qualified element in each of the η subsystems is
approximately (2n+1)2

N and the probability of obtaining a different basis state is
approximately 1

N . Thus, it follows by the law of large numbers [17] that out of η

subsystems, (2n+1)2η
N ±O(

√
η

N ) lie in state Sk. Assuming n to be large enough the
equation is simplified to 4n2η

N ± O(
√

η

N ) and if we let η = KN , then the equation
can be rewritten as 4n2K ± O(

√
K). We can test the extreme values of ‘n’ for

which the system will give an optimum value and hence provide both the upper
and lower bounds.

For small size case, such as n =
√

log2 N : The state vector can be written
as (|S1〉 + |S2〉 + ... + (2

√
log2 N + 1)|Sk〉 + ... + |SN 〉)η. The probability of

obtaining the basis state corresponding to the marked state in each of the η
subsystems is approximately 4 log2 N

N and the probability of obtaining a different
basis state is approximately 1

N . Again it follows by the law of large numbers [17]
that out of η subsystems, 4Klog2 N ± O(

√
K) lie in state Sk, where K = η

N .
In fact, it follows by the central limit theorem [18] that the probability of a
particular variable deviating by more than ±γ

√
K from its expected value is

less than exp[−O(γ2)]. Thus, if η is of the order of N then the equation becomes
4 log2 N ± O(1), which means that the overall effectiveness of the algorithm in
this case has no improvement over the classical case.

It is important to note here that the value of n has to be less than
√

N
2 or

else it will become a certain condition, with the probability reaching 1, thus all
of the subsystems will be in the qualified state. Let us test this other limit now.
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Testing the upper limit for n =
√

N
2 : The state vector can be written as

(|S1〉 + |S2〉 + ... + (
√

N + 1)|Sk〉 + ... + |SN 〉)η. The probability of obtaining
the basis state corresponding to the qualified state in each of the η subsystems
is approximately 1 and the probability of obtaining a different basis state is
approximately 1

N . By the law of large numbers [17], therefore, it follows that
out of η subsystems, η ± O(

√
η

N ) lie in state Sk. Typically, η � N , so the uncer-
tainty due to O(

√
η

N ) can be neglected. There will be post processing steps of
the order O(

√
η). Thus, the overall effectiveness of the algorithm increases to

O(
√

N), since η � N .
We have, therefore, managed to show that the distributed quantum comput-

ing approach essentially preserves the benefits of Grover?s search algorithm for
big data problems while for small problems the situation converges to the limit of
the classical case. Since the scaling issue is prevalent for large computing sizes,
distributing the computing load over smaller quantum nodes is an important
feasibility criterion related to the scaling issues in quantum computing.

5 Conclusions

We distributed the computational load of Grover’s search algorithm over a quan-
tum network, which is facilitated through ideal teleportation communications.
Grover’s single-query method carries a lot of overhead pertaining to the prepa-
ration and post-processing of the query [O(N log2 N) steps]. Hence, we relax
the single-query constraint in order to achieve more optimal performance, which
is significantly better than classical methodology [O(log2 N)]. Essentially this
extension of Grover’s approach, being assisted by quantum-networking ideas is
crucial for scaling the problem. We have managed to show that if we replicate
Grover’s algorithmic approach of amplifying the probability of the eligible candi-
date in database ‘n’ times, we are bound by O(

√
N) for a much improved upper

limit of n (n =
√

N
2 ) though the lower bound is an unchanged classical case of

O(N) for small n. However, since we would only be distributing the computing
load for a large enough data-size, the advantages are evident. Furthermore, our
approach addresses and substantially dilutes the practical concern regarding the
limited qubit space associated with one quantum computer. Hence it should be
seen as a promising computing framework. These results also provide substan-
tial encouragement and impetus for scaling quantum computation by coupling
quantum teleportation of multiple small quantum computer nodes.
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