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Preface

Here we describe our considerations in designing the control systems labora-
tory component of EE 380 (course title “Electrical Engineering Laboratory”)
around an apparently simple DC motor control testbed.

0.1 Skills the control experiments need to impart

EE380 is a four credit hour laboratory course. Control systems constitutes one-
third of this course. Given that we currently have only one control systems
course active at the UG level at IITK, and that the one-third of EE380 is the
only exposure the students have to a control systems laboratory at IITK, what
do we want the students to learn from this brief exposure to the controls lab?

Here is one answer: In addition to helping the students practice paper-based
or PC-based design techniques, most of which they may have seen in their
lecture course on control systems, we believe that controls experiments need
to help the students acquire the following skills associated with converting the
paper-based or PC-based design into a practical system:

1. Ability to identify the hardware and software that are needed in a basic
control system.

2. Ability to make this hardware and software work together.

3. Ability to debug small errors that may appear during practical implementa-
tion.

This knowledge comes only through at least a few weeks of work on problems,
all of which may be related to one or two hardware setups that are not — and
do not look — complex.

Overall, the lab experiments need to give the student confidence enough to say,
“I have practical experience with implementing control systems in addition to
designing and simulating them”.
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0.2 Past status of Control Systems Laboratory

Up to the August – December semester of 2008 EE380 had 4 sections of up to
24 students. Each section was divided into 6 groups of up to 4 students.

0.2.1 Logistical challenges

1. Six different experiments were done concurrently during each lab session
with support from two TAs per session. Therefore, each TA and tutor
needed to know all the 6 experiments every week, thus putting pressure
on them.

Thus, in any given week, the TAs expended more effort than if they were all
preparing for the same experiment.

2. Also, with increased student intake (with up to 30 students per section),
under that model, we would have had cacophony in the lab with everyone
speaking about a different experiment.

3. With increased student intake, multiplying the then existing set of exper-
iments would have been expensive. It would have been expensive to in-
crease the number of inverted pendulums, or the number of ball and beam
setups, or even the number of DAQ cards from NI. An inverted pendulum
or a ball-beam setup comes for about Rupees Five Lakh each.

0.2.2 Solution to these challenges

The solution is for all the students, TAs, and tutors to do the same experiment in
a given week. This model exists in the ESO210 labs, for example. It has the
following advantages:

1. We will need only 2 – 3 TAs per section.

2. The students, TAs, and tutors will generate more knowledge than if they
were all working on different experiments.

3. It will be easier for the entire class as everybody is talking about the same
thing in a given week.

0.3 Planning for the future

0.3.1 Models for the experiments

We may have two models for the control experiments:

Model 1 The student sees one experimental setup in each experiment (e.g.,
magnetic levitation, dc motor control, ball and beam, inverted pendulum,
etc.). The student designs a controller for the given system based on a math-
ematical model that was provided by the control system’s manufacturer,
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and inputs the values of the controller’s parameters into a convenient in-
terface provided on the control system. The control system itself has been
built by someone else and is almost a black box to the student.

Pro: This way, the student becomes acquainted with the various control ex-
perimental setups that are available in the market, and the real-life system
each of these setups models. But, the student could have learned this from
www.youtube.com too.

Pro: The students may learn that a control system works differently in prac-
tice than on paper.

Pro: This kind of an experiment impresses upon the student the wide appli-
cability of control systems theory.

Con: The student does not see the hardware innards of the control system,
nor does he/she talk to anybody that has actually built this setup and could
share his/her experience building it.

Model 2 The student works with only one or two experimental setups through
the semester.

Pro: The student solves many different problems associated with each setup.
This way, the student can learn how a practical control system is actually
built after the paper-/PC- based design and simulation.

The pros in Model 1 are not significant enough for the student to spend a
semester in the EE380 labs. On the other hand, the pro of Model 2 is. We
recommend Model 2 as it is in consonance with Sections 0.1 and 0.2.2.

0.3.2 Suggested new set of experiments

We recommend a phased introduction of Model 2 described in the previous
subsection. Towards this end, we suggest that in the first two years of intro-
duction of this new plan, the students will perform single-loop experiments
that only involve the control of a DC motor, and design and simulation using
MATLAB/Octave/Scilab.

The DC motor control experimental setup offers rich possibilities for learning
the practical aspects of control systems design and implementation. Quanser
has a DC motor control kit with a user manual that lists at least 6–7 experi-
ments1. We could borrow ideas from that list too apart from using the experi-
ments that we have already designed.

In the July — December semester of 2009, we introduced 4 new experiments
involving control of DC motor. Thus, we already have experience with these
new experiments.

For additional details, please see the paper [1].

1http://www.quanser.com/english/downloads/products/Mechatronics/
QET%20PIS_031708.pdf
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Contributions to the lab

Late 2008 Dr. Ramprasad Potluri conceptualized the lab as outlined in the
Preface.

Early 2009 Mr. Manavaalan Gunasekaran suggested development of the
dsPIC boards for a 4WD4WS vehicle that we plan to build in the Networked
Control Systems Laboratory.

June – July 2009 Ms. R. Sirisha and Mr. Yash Pant, 4th year BTech students,
College of Engineering, Roorkee, designed, built, tested, and documented
the first prototype of the dsPIC board.

Mid-June 2009 Dr. Potluri was asked to teach CS-EE380-Fall2009.

July 2009 Mr. Manavaalan Gunasekaran improved the boards and imple-
mented the first four experiments.

Fall 2009 The dsPIC boards were put to use in CS-EE380-Fall2009.

Dr. Adrish Banerjee gave valuable feedback and encouragement from his
stint as a tutor for this lab.

Funds were announced by IITK’s capacity expansion program (CEP) (2009)
to set up the pmdc motor control-based experiments in a new control sys-
tems laboratory.

Summer 2010 Mr. Mohit Gupta, a 4th year BTech student of Manipal Institute
of Technology, helped multiply the dsPIC board. He also helped make a few
ergonomic improvements.

Summer 2009 & summer 2010 The dsPIC boards were fabricated in the PCB
Lab of the EE department under Mr. Kole’s supervision. Mr. Kole suggested
several ergonomic improvements.

Summer 2010 Mr. Uday Mazumdar, in-charge of the Control Systems Lab had
the mechanical part of the setup built and assembled. He also supervised
setting the lab up in the new room (WL216).

Mr. Sripal of the Basic Electronics Lab populated 21 of the dsPIC boards.

Mr. Harishankar populated the H-bridge boards.

At every stage beginning the CEP, the lab received support from the then
Head of the department, Prof. Ajit Kumar Chaturvedi.
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July 2011 Mr. Uday Mazumdar assumed the responsibility of trouble-
shooting the hardware problems that arise on the boards.

January 2012 A paper [1] that describes this laboratory in details was pub-
lished.

September 2013 A modified version of Experiment 4 was introduced as Ex-
periment 9, based on Mr. Kumar Saurav’s paper [2]. This paper was a result
of Mr. Kumar Saurav’s work during May 2012 – June 2013.
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Chapter 1

The experimental setup

1.1 Introduction

The block diagram of the setup is as shown in Figure 1.1. A dsPIC30F4012
micro-controller from Microchip (www.microchip.com) is used to house the
P/PI/PID or any other controller that we will design. An H-bridge two-
quadrant DC chopper board built around an L298 dual motor driver chip by
Solarbotics (www.solarbotics.com) is used to drive the DC servo motor.

One PWM signal, one direction control signal, and one enable signal are re-
quired to control the motor in two-quadrant operation using L298. The fol-
lowing section provides a short description about the dsPIC30F4012 micro-
controller and its programming to see how these three signals are generated.
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Figure 1.1: Block diagram of the setup. DB stands for dsPIC board.

1.2 Microcontroller dsPIC30F4012

The dsPIC30F4012 is a 16-bit microcontroller that Microchip calls a digital sig-
nal controller. dsPIC30F4012 has been optimized for motor control application.

1
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Here is a brief description of some of its features used in our setup.

1.2.1 Timer Module

We use Timer-1, one of the five timers of the timer module, to generate an
interrupt at each sampling instant. When the interrupt occurs, dsPIC exe-
cutes the Timer-1’s interrupt service routine (ISR). We have written this ISR in
main-prog.c to perform the tasks shown in Figure 1.4 and further elaborated
in the timing diagram of Figure 1.5.

We have set the internal clock frequency FCY to one fourth the oscillator
frequency FOSC, that is, (FCY = FOSC/4). In practice, FCY ≤ FOSC/4 in
dsPIC30F4012. We use this FCY in the timer module. For a sampling time Ts in
seconds, the value PR1 in the period register is calculated as follows:

PR1 =
Ts

TCY
= FCYTs =

FOSCTs

4

In our dsPIC board FOSC is 29.492 MHz.

Note 1.1. An adequate sampling period Ts would be one within which the ISR of
Timer 1 completes execution. Therefore, to determine a Ts that would be adequate for
our purpose, we determine as follows the time that the ISR needs to execute. We set the
GPIO pin E8 (LATEbits.LATE8 = 1) when the timer interrupt occurs (code starts
to execute at the sampling instant), and reset this pin (LATEbits.LATE8 = 0) when
the ISR completes execution. The output from this pin from set to reset is a pulse and
can be seen on an oscilloscope. The duration of this pulse is the execution time of the
code. If this duration is not less than Ts, we need to increase Ts.

In our experiments, Ts = 2 ms was found to be adequate.

1.2.2 Pulse Width Modulation (PWM) Module

The PWM module is used to generate a PWM signal with duty ratio computed
from the controller output. We have used PWM1L to drive the H-bridge cir-
cuit. If the controller output is u then the duty ratio is D = u/Vs, where Vs is
the power supply voltage to the motor driver in volts. To generate a PWM with
a frequency FPWM in Hz and duty ratio D, the settings of the PWM module are

PTPER = FCY/FPWM − 1, PDC1 = 2D(PTPER + 1)

In our experiments FPWM = 50 kHz.

1.2.3 Quadrature Encoder Interface (QEI) Module

It is used to interface the motor speed encoder to calculate the speed. Figure 1.2
explains the working of the quadrature encoder. The signals of the QEI are

2
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Figure 1.2: How the quadrature encoder works. The encoder comprises three
parts: an opaque disc with slots of equal width cut at equals intervals along its
circumference, two sources of light on one side of the disc, and two receivers of
light on the other side of the disc. The sources and receivers are mapped one-to-
one. The signals from the receivers are labeled A and B. Assume that light being
blocked by the disc represents a logical 0, and light being passed by the disc rep-
resents a logical 1. B leads A when the disc rotates clock wise and A leads B when
the disc rotates anti-clockwise.

shown in Figure 1.3. The QEI is configured in x2 mode (QEICON< 10 : 8 > =
101). In this mode both edges — rising and falling — of the phase-A signal
cause the position counter to change value (increment or decrement). The
phase-B signal is utilized for the determination of the position counter’s di-
rection (increment or decrement).

The value of the count, which — for each period Ts — is twice the number of
pulses from the encoder, is accessible through a register POSCNT.

If the encoder has a resolution of CT counts per turn, then the speed ω in
rad/sec is given by

ω =
2π

Ts

POSCNT
2CT

1.2.4 Universal Asynchronous Receiver Transmitter (UART)
Module

This is used to communicate with Personal Computer (PC). We use this to send
the data of speed and controller output (which is the voltage we wish the H-
bridge to apply to the motor) to the PC for plotting. UART is configured with
one stop bit and the register U1BRG is used to set the baud rate. Let BR be the
baud rate then the register value is given by

U1BRG =
FCY

16BR
− 1

In our program, the baud rate is 115200. This is the maximum possible baud
rate for our dsPIC board with 29.492 MHz oscillator and its corresponding
value for the U1BRG register is 0x0003.

3
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Figure 1.3: Signals of the QEI. Figure copied from Maxon Motor.

1.2.5 GPIO Pins

The GPIO pin D0 is used as a digital output to change the polarity of the volt-
age output by the H-bridge (to change the direction of the rotation of the mo-
tor). The data direction register (TRISx) determines whether the pin is an input
(1) or an output (0). Reading or writing the latch is done by using LATx.

See the section titled pwm_control function in the file setting-prog.h for
further details.

In our case, TRISD = 0 (Port D is configured as output port).

1.2.6 Analog to Digital Convertor (ADC)

Pins AN(0-2) are configured as analog inputs by using register ADPCFG. Auto
conversion mode is used (SSRC(2:0) = 111). The analog input to be converted
is selected using ADCHS register (CH0SA(3:0) bits e.g. 000 for AN0, 001 for
AN1). In settings program AN0 is alone selected for conversion.

1.3 Choice of sampling interval

As our microcontroller does not have enough on-chip memory to hold the data
we generate during each control run of the setup, we communicate to the PC
the data as and when it is generated, which means within each sampling in-
terval. In the experiments we do in EE380, this data is that of position, speed,
armature voltage, and current.

If we wish to communicate only two of these variables to the PC, then it seems
that Ts = 0.002 s may be adquate. In our earlier trials, when we tried to com-
municate three variables to the PC, we found that, while a sampling interval of

4
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Timer interrupt
occurred?

NO

Reset the timer interrupt enable flag (IFSobits.T1IF=0)
YES

Calculate the speed/position using the QEI count register and
reset the QEI count register

Send the speed to UART transmit register

Update the controller action and generate the controller output

Send the controller output value to UART transmit register

Figure 1.4: Flow chart of the ISR in main-prog.c. Interrupt enable flag reset Calculation of speed and reset the QEI count register UART Communication Controller update 
0 Timer interrupt Ts 2Ts 

PWM 
Figure 1.5: Timing diagram for the tasks that the ISR implements.

0.002 s was not adequate, even a sampling interval of 0.003 s, which seems to
be a reasonable choice, was inadequate occassionally. Here, by inadequate we
mean that the log file created by terminal.exe contained non-numeric data
where it should have contained numeric data. We hypothesize that this inade-
quacy may be due to the non-realtime nature of how MS Windows may handle
UART communication given that we have not made a provision for handshak-
ing signals (see Subsection 1.7.2). However, this hypothesis needs testing.
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δ H-bridgeΠ
Motor

Vr ω

?

Figure 1.6: Diagram of the plant for which the controller is designed, used in all
the experiments except the experiment on Ziegler-Nichols tuning. The part en-
closed in the dashed box and labeled ? is inside the dsPIC microcontroller, ua is
the numerical value of voltage applied to motor’s armature, VS is the source volt-
age applied to the H-bridge board, and δ is the duty ratio. The dsPIC outputs
a PWM signal Π of duty ratio δ to the H-bridge board. The H-bridge outputs a
variable-magnitude DC voltage Vr to the motor. The saturation block implements
the operation −0.8VS ≤ ua ≤ 0.8VS.
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Figure 1.7: Left-fig: The blue curve is the voltage Vm (same as Vr in Figure 1.6)
output by the H-bridge versus the input voltage u specified by the microcontroller;
the black curve is the voltage across the sensing resistor (Rs = 5 Ω) versus u. The
supply voltage is 12 V. Right-fig: The current isens through the sensing resistor
versus actual motor current i.

1.4 Parameters of PMDC motor-gear-encoder unit

For data sheets of the motor, gear, and encoder, Google with the key words
A-max26 110963 (for motor), GP26B 144036 (for gear), and HEDS 5540 110511
(for encoder). These three items are from Maxon Motor (www.maxonmotor.com).
The parameters of our PMDC motor are reproduced in Table 1.1.

1.5 Characteristics of the H-bridge board

This section is based on tests we performed on the plant of Figure 1.6.

Figure 1.7-left shows that the relationship between the microcontroller output
u and the H-bridge output Vm is nonlinear. This relationship has a dead zone
for |u| ≤ 2 V, and is linear for |u| > 2 V. This characteristic concerns us in, for
example, experiments 2, 3, and 4.

Figure 1.7-right shows the relation between the actual motor current i and the
current isens sensed using the sensing resistor Rs for Vs constant and TL varying.
This data suggests that i ≈ 0.533isens − 0.027.
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Table 1.1: Parameters of the DC servo motor.

Parameter Value Units

Nominal voltage 24 V

No load speed 8820 rpm

No load current 31.7 mA

Nominal speed 6730 rpm

Nominal torque 17.2 mN ·m
Nominal current 0.704 A

Stall torque 77.6 mN ·m
Starting current 3.04 A

Max. efficiency 79 %

Terminal resistance 7.9 Ω

Terminal inductance 0.770 mH

Torque constant 25.5 mN ·m/A

Speed constant 374 rpm/V

Rotor inertia 13.0 g · cm2

Gear mass inertia 0.4 g · cm2

Gear ratio 62:1

Encoder: Counts per turn 500

Using isens and the drop VH in the H-bridge, we found that the H-bridge has
a resistance RH of about 27.5 ohm. VH and RH were determined as VH =
u−Vm−Vsens and RH = VH/isens. Vm and Vsens were measured using a digital
multimeter. Isens was found as isens = Vsens/Rs.

The response of the motor to a step u of magnitude 5 V has a steady-state value
ωo = 150 rad/sec. This response is divided by 5 and plotted in Figure 1.8.
Also plotted in the same figure is the unit step response of the physics-based
TF Km/(τms + 1) of the same motor. This TF was obtained as described in
Section 2.3. The values of the parameters in this TF are directly or indirectly
determined from Table 1.1 and converted into SI units. While KT and J can be
read off the table, and Kb — the back EMF constant — is the reciprocal of the
speed constant, B and R∑ need a little thought.

Even though we included the H-bridge as a resistor, as described in Section 1.6,
there is a mismatch in Km by 3 units and time constant by 0.01 s. This mismatch
needs investigation.

1.6 Calculation of B and armature resistance

Bω is the viscous friction torque in the bearings of the motor, and B is the co-
efficient of viscous friction in the bearings. The literature says that the viscous

7
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Figure 1.8: Step responses of physics-based TF (denoted Simulation) and actual
plant (denoted Practical).

friction (as opposed to rolling friction, Coulomb friction, etc) is the dominant
component of bearing friction.

When no load is applied to the motor shaft (TL = 0) and the speed is steady
( dω

dt = 0), the developed torque Kti needs to be enough to equal only Bω.

In the same experiment that helped generate the practical curve of Figure 1.8,
the no-load motor armature current was found to be Imo = 0.0173. Also, we
saw that ωo = 150 rad/sec. From the data sheet Kt = 25.5 mNm/A. Therefore,
B = Kt Imo/ωo = 2.9374× 10−6 Nm/(rad/s).

The actual resistance in the motor armature circuit is R∑ = Rm + Rs + RH . The
motor terminal resistance Rm equals 7.9 Ω. Thus, R∑ = 7.9+ 5+ 27.5 = 40.4 Ω.

1.7 Programming

1.7.1 Writing from PC to dsPIC

MPLAB Integrated Development Environment (IDE) v.8.30 and the academic
version of MPLAB C30 C compiler are used to create a ’.hex’ file from
the project (C language program). This ’.hex’ file will be loaded to the

8
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dsPIC30F4012 through PICKIT-2 using PICKIT2 v2.61 software. We wrote a
code to configure all the modules that are necessary for our setup. In that code
the controller part alone needs to be modified according to your own designed
controller. The simple procedure to write a program into dsPIC is as follows:

• Run the MPLAB IDE and open the project file which we have provided you
on the Desktop of your PC.

• In that project C-program file the controller code part should be modified to
form your own designed controller.

• Save all and go to Project→ Build All. Make sure that the PICkit 2 is chosen
in Programmer→ Select Programmer.

• Export the .hex file (File→ Export). Remember the file name and location.

• Run the PICkit 2 Programmer software, choose the device family dsPIC30,
import the ’.hex’ file, and write the program to dsPIC30F4012 by pressing
the Write command button.

1.7.2 Reading the data from dsPIC to PC

Run the Hyper Terminal or Bray’s Terminal.exe v.1.9b – 20040204, choose
COM1 Port, set Baud rate to 115200, 8-data bits, none parity bit, 1-stop bit
and none handshaking bit. Store the data in the text file and import the data
to MATLAB. The odd indexed data are values of speed (ω(i ∗ Ts) = datai;
i = 1, 3, 5, · · · ) in rad/sec. The even indexed data are 100 times the controller
output data (v(i ∗ Ts) = datai/100; i = 2, 4, 6, · · · ) in volts.

1.8 Program listings

1.8.1 main-prog.c

// main-prog.c.

#include<p30f4012.h>
#include "settings-prog.h"
_FOSC(CSW_FSCM_OFF & XT); // To use the external crystal
_FWDT(WDT_OFF); // To disable the watchdog timer

// split the data by decimal digits (0 - 9) in 3 digit form
void send_data(int);

int AD_value(); // Declare the AD value reading function
double pulse;
float V_s, duty, u, error, speed, pos, T;
float Iest[2], West, wf, IV;
float Fpwm, Kb, Ra, R;
float ac,bc,cc,dc;
float x;
float Is, IF, Ihat;

9
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//
// Declare your variables here
//

void main()
{
// Initialise your variables here

wf = 50; // Filter cut-off frequency in rad/sec
error = 0.0;
duty = 0.0;
u = 0.0; // initialise the controller o/p
speed = 0.0; // Rad/sec
pos = 0.0; // radians
T = 0.002; // Sampling time in sec
Fpwm = 50; // PWM Frequency in kHz
V_s = 12.0; // Power supply Voltage
TRISD = 0; // D port is configured as output port
LATD = 1; // used for direction control

qei_set(); // Initialise QEI settings
pwm_set(Fpwm); // Initialise PWM settings
uart_set(); // Initialise UART settings
AD_set(); // Initialise ADC settings
timer1_set(T); // Initialise Timer-1 settings & start timer
TRISEbits.TRISE8 = 0; // RE8 is configured as output

// You need to use your own values of ac, bc, cc, dc below
ac = 1-0.2*T; bc = T; cc = 0.29898; dc = 0.0151;
R = 100; Ra = 28.7; Kb = 0.0255;
// I[0] = 0; I[1] = 0; IF[0] = 0; IF[1] = 0;
Is = 0; IF = 0; Ihat = 0;

// Continue until stop the power
for(;;);

}// End of main()

// Interrupt service routine (ISR) for interrupt from Timer1

void __attribute__((interrupt, no_auto_psv)) _T1Interrupt (void)
{
IFS0bits.T1IF = 0; // Clear timer 1 interrupt flag

// To calculate the execution time of the controller code make E8 = 1

LATEbits.LATE8 = 1;
uart_tx(9);

// QEI count feedback
// if motor is in anticlockwise direction,count goes down from FFFF.

if(POSCNT > 0x8000)
{

10
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pulse = 0xFFFF - POSCNT;
pulse = - pulse;

}
else
pulse = POSCNT;

POSCNT = 0; // Reset the QEI count

// Calculation of speed (rad/s)
// speed = 2*pi*( no of pulse/(2*500) )/T in (rad/sec)
speed = 6.2831853 * pulse/1000/T;
send_data(speed); // Transmit the speed

// send_data(West);

// Calculation of position (rad)
// pos_current = pos_past + 2*pi*[no of pulse/(2*500)]/Rg in (rad)
// Rg = 62 gear ratio
// pos = pos + 6.2831853 * pulse/62000;
// send_data(pos*100); // Transmit the position *100

// In the experiment where we input a sine wave that lies in the
// interval [0,5] V, and the speed reference is a sinusoid, enable
// the following two lines to give the reference input.
//
// R = AD_value(); // In signed mode, ADC maps [0,5] V to [-511,+511].
// R = 10.0*R/511; // R = 10*sin(w_in*t) rad/sec; 10 is max speed.
//
// R = R/511*10.0; // This is a working alternative to R = 10.0*R/511;
//

// R = R/511*10 or R = 10*R/511 do not work as we intend. Need
// to see how C language defines arithmetic operations.

// ---------------------- CAUTION -------------------------------
// By "amplitude", we mean half the peak-to-peak value,
// whereas the FG Scientific SM5078 means by "amplitude"
// the peak-to-peak value of the periodic signal. So, if
// you wish to apply a sinusoid/triangle/rectangle of
// peak-to-peak value 10 V, set the function generator
// through MODE --> AMP to 5 V.
// --------------------------------------------------------------

// West = (u-Ra*IF)/Kb;
// West = (u-Ra*Ihat)/Kb;

// Uncomment below 2 lines in experiments that use feedback of current.

// IV = AD_value(); // Read voltage across Rs=4.7ohm.
// IV = 5*(511 + IV)/1022; // Convert signed to unsigned.

// Uncomment the following line to observe filtered current
//
// send_data(IF*1000);
//
// Why the 1000? We have observed in our trials that the current

11
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// is less than 1 A in magnitude. Irrespective of what the actual
// values may be, for convenience, we send integers of at most 3
// digits from the UART module. Therefore, when the current is
// upto 0.999 in magnitude, we multiply its value by 1000. If we
// find that it exceeds 0.999, then we may choose to multiply by
// a number that will result in a product of at most 999.

// Ihat = (2.6)*IF;
// Is = IV/4.7; // Convert voltage to current.
// IF = (1-5.0*T)*IF + 5.0*T*Is; // Low-pass filter.

/*********** Start of your controller ****************/

// error = R - West;
// u = cc*x + dc*error;
// x = ac*x + bc*error;

/*-------------- Dead zone compensation-----------------*/
/*
if (u > 0)
u = u + 2;

else if (u <= 0)
u = u - 2;

*/
/*------------End of dead zone compensation-------------*/

/*********** End of your controller ******************/

// u = 5.0*AD_value()/511;

// u=7; // For step input uncomment this to provide step of 7

if(u > 0.8 * V_s)
u = 0.8 * V_s; // Positive saturation

else if(u < -0.8 * V_s)
u = -0.8 * V_s; // Negative saturation

duty = u/V_s;
pwm_con(duty); // Update PWM using new duty ratio
uart_tx(9);
send_data(u*100); // Send 100 times control effort u.

LATEbits.LATE8=0;
} // End of ISR of Timer 1

void send_data(int s_data)
{
int s;
if(s_data < 0)
{
// Send the negative sign (ASCII is 45)
uart_tx(45);
s_data = -1*s_data;

12
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}

// Digit with the position value of 100
s = s_data/100;
uart_tx(s+48);

// Digit with the position value of 10
s_data = s_data - (s *100);
s = s_data/10;
uart_tx(s+48);

// Digit with the position value of 1
s_data = s_data - (s *10);
uart_tx(s_data+48);

}// End of send_data()

int AD_value()
{
int count, *ADC16Ptr, ADCValue = 0; // clear value
ADC16Ptr = &ADCBUF0; // Initialize ADCBUF pointer
ADCON1bits.ADON = 1; // Turn ADC ON
IFS0bits.ADIF = 0; // Clear ADC interrupt flag
ADCON1bits.ASAM = 1; // Auto start sampling

while (!IFS0bits.ADIF); // Conversion done?
ADCON1bits.ASAM = 0; // If YES then stop sample/convert

for (count = 0; count < 2; count++) // Average the 2 ADC value
ADCValue = ADCValue + *ADC16Ptr++;

ADCValue = ADCValue >> 1; //‘‘>>’’ represents ‘‘shift by 1 to left’’.
// Equivalent to ‘‘divide by 2’’.

return(ADCValue);
}// End of AD_value()

1.8.2 settings-prog.h

// settings-prog.h: Settings for dsPIC30F4012 PCB with 29.492 MHz
// crystal oscillator

/*------------UART settings:---------------
Fcy = Fosc/4 = 29492000/4 = 7373000Hz
U1BRG = {Fcy/(16 * Baud_Rate) } - 1
conf: 1 stop bit, 8 data bit, no parity

------------------------------------------*/

#include<p30f4012.h>

void timer1_set(float); // Timer-1 settings
void qei_set(); // QEI settings
void pwm_set(int); // PWM settings
void pwm_con(float); // PWM control based on duty ratio
void uart_tx(int); // UART data to be transfered to PC
void uart_set(); // UART settings

13
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void AD_set(); // A-D settings

void pwm_con(float Duty) // ******* pwm_control function
{
int pdc;
pdc = Duty * 2 *(PTPER + 1);
if(pdc == 0)
{
// Shut down all the IR2110
LATDbits.LATD1 = 1;
LATDbits.LATD0 = 1;
}
else if(pdc < 0)
{
// Make sure IR2110-2 is shut down, and IR2110-1 is active
LATDbits.LATD1 = 1; // RD1 = 1, IR2110-2 is shut down
LATDbits.LATD0 = 0; // RD0 = 0, IR2110-1 is active
pdc = 2*( PTPER+1) + pdc;
}
else if(pdc > 0)
{
// Make sure IR2110-1 is shut down, and IR2110-2 is active
LATDbits.LATD0 = 1; // RD0 = 1, IR2110-1 is shut down
LATDbits.LATD1 = 0; // RD1 = 0, IR2110-2 is active
}
PDC1 = pdc;

}

void timer1_set(float Ts) // ******* Timer-1 settings
{
IEC0bits.T1IE = 1; // Enable Timer-1 interrupt
IFS0bits.T1IF = 0;// Clear Timer-1 interrupt flag to get next interrupt
PR1 = 7373000*Ts;// No of clk (count) per controller sampling time
TMR1 = 0; // Initialize timer count
T1CON = 0x8000;// Starts timer, Internal clock (Fosc/4), prescale 1:1

}

void qei_set() // ******* QEI module settings
{
ADPCFG = 0x0038;// Configure pins AN(3-5)/RB(3-5) to Digital I/O mode

// AN(0-2) pins are in Analog mode
IEC2bits.QEIIE = 0; // Disable interrupt due to QEI
IFS2bits.QEIIF = 0; // Clear the interrupt flag
QEICON = 0; // Default mode: QEI mode/timer off
QEICONbits.QEIM= 5;
DFLTCON = 0x0100; // No filter operation
POSCNT = 0; // Initialize position of counter
MAXCNT = 0xFFFF; // set maxcount limit

}

void pwm_set(int F_pwm) // ******* PWM module settings
{
// PWM timer was enabled, 1:1 prescale Tcy, 1:1 Postscale,
PTCON = 0x8000; // PWM time base operates in free running mode

14
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PTPER = 7373/F_pwm - 1;// PWM Time Base Period Register (Period of PWM)
// Note: PTPER = {Fcy/(Fpwm*PTMER_prescaler) - 1 }
// Fcy =Fosc/4 = 7373000
PWMCON1 = 0x0011; // PWM I/O pin pair is in complementary output mode

// PWM1L & PWM1H enabled; remaining are in I/O mode
PDC1 = 0; // Initially duty ratio is zero;
OVDCON = 0x0303; // Controlled by PWM module
PTMR = 0x0000; // PWM Time Base Register initialized

}

void uart_tx(int tx_data) // ******* Transmit the Data through UART
{
while(U1STAbits.UTXBF == 1)
{
// wait to the UART transmit buffer gets one emty space
}
// if(U1STAbits.UTXBF!=1) // If buffer is not full, transmit data
U1TXREG=tx_data; // Transmit

}

void uart_set() // ******* UART module settings
{
U1MODE = 0x8400; // 1-stop bit and U1ARX, U1ATX are used
//U1MODE = 0x8000; // 1-stop bit and U1RX, U1TX are used
U1STAbits.UTXEN = 1; // Enable the UART transmiter
U1STAbits.UTXISEL = 0; // Interrupt generated when any character

// transferred to transmit register
IEC0bits.U1TXIE = 1; // Enable the Interrupt for the Transmiter
IFS0bits.U1TXIF = 0; // Clear transmiter Interrupt flag to transmit
IEC0bits.U1RXIE = 1; // Enable the Interrupt for the Receiver
IFS0bits.U1RXIF = 0; // Clear the transmiter Interrupt flag to receive
U1BRG = 0x0003; // Baud_rate 115200
// U1BRG = 0x0007; // Baud_rate 57600

}

void AD_set() // ***** A to D (A/D) Settings
{
ADPCFG = 0x0038; // Configure pins AN(3-5)/RB(3-5) into Digital

// I/O mode AN(0-2) pins are in Analog mode
ADCON1 = 0x01E0; // SSRC bit = 111 (auto convert) implies internal

// counter ends sampling and starts converting.
ADCHS = 0x0000; // Connect RB0/AN0 as CH0 input.
ADCSSL = 0;
ADCON3 = 0x0F00; // Sample time = 15Tad, Tad = internal Tcy/2
ADCON2 = 0x0004; // Interrupt after every 2 samples

}

// ***** UART Transmit ISR
void __attribute__((interrupt, no_auto_psv)) _U1TXInterrupt(void)
{
IFS0bits.U1TXIF = 0; // clear TX interrupt flag

}

// ***** UART Receive ISR
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void __attribute__((interrupt, no_auto_psv)) _U1RXInterrupt(void)
{
IFS0bits.U1RXIF = 0; //clear receive interrupt flag
/*
while (U1STAbits.URXDA)
{
speedset=U1RXREG;
}

*/
if(U1STAbits.OERR == 1)
{
U1STAbits.OERR = 0; // Clear Overrun Error to receive data
}

}

1.8.3 readplot.m

% readplot.m: Uses GNU Octave’s or MATLAB’s dlmread function to
% read the contents of the file testdata.txt into a vector. This
% file belongs to the lab manual for EE380 (control lab).
%
% The file testdata.txt is generated as follows. The program
% terminal.exe writes the information that it receives from
% dsPIC30F4012 to the file testdata.txt. The program in
% dsPIC30F4012 sends this information as tab seperated ASCII
% values.
%
% We have tested that this m-file executes nicely in GNU Octave
% version 3.2.4 that comes packaged for Windows in
%
% http://sourceforge.net/projects/octave/files/
% Octave_Windows%20-%20MinGW/
% Octave%203.2.4%20for%20Windows%20MinGW32%20Installer/
% Octave-3.2.4_i686-pc-mingw32_gcc-4.4.0_setup.exe/download
%
% and MATLAB 7.7.0471 (R2008b) that we have in our CC. On MATLAB
% dlmread(’testdata.txt’) seems to be returning the last item in
% the vector as 0 even though it may be blank. GNU Octave does
% not have this problem.
%
% The plots are generated nicely in MATLAB and the Linux version
% of GNU Octave. The plotting program (most likely GNUPlot) in
% the windows version of GNU Octave does not seem to be properly
% integrated into GNU Octave. So, we have trouble displaying the
% results of plot on the screen. As a work around, we have used
% the command
%
% print -djpg plot.jpg
%
% to print the plots to jpeg files.
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%
% We found that this problem has been reported at
%
% http://octave.1599824.n4.nabble.com/
% Gnuplot-freezes-in-Win7-3-2-4-td2279218.html#a2279218
%
% and a work-around has been suggested there and at
%
% http://old.nabble.com/
% Re:-Octave-3.2.4-mingw32-available-p28053703.html
%
% Using this work-around does remove this problem.
%
% PRECONDITIONS: readplot.m and testdata.txt need to be in the
% same folder. All data in testdata.txt is tab-separated and in a
% single row, and no spaces lead the first item of the data.
%
% Date created on: September 12, 2010.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all, close all, clc

x = dlmread(’terminal.log’);

% Determine the number of rows and columns of x.
% If all went well, the number of rows will be equal to 1.
[rows,cols] = size(x);

% Truncate x so that x has an even number of columns.
if cols/2 > floor(cols/2)
x = x(:,1:cols-1);
cols = cols-1;

end

% Extract columns number 1, 3, 5, ... into a vector w,
% and columns number 2, 4, 6, ... into a vector u.
w = x(1,1:2:cols-1); % This is the vector of speeds
u = x(1,2:2:cols)/100; % This is the vector of voltages.

% Calculate times at which to plot speed and voltage.
T = 0.002; % sampling time
t = 0:T:T*(cols/2-1);

% Plot the speeds and the voltages with respect to time.
subplot(2,1,1); plot(t,w); grid;
title(’Speed of the motor shaft in (rad/s)’);
subplot(2,1,2); plot(t,u); grid(gca,’minor’);
title(’Voltage applied to motor in (V)’);

print -djpg plots.jpg
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1.9 Schematic of the dsPIC30F4012 board
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Chapter 2

Experiment 1: PMDC motor
modeling, identification,
speed control

2.1 Goals

1. Develop a physics-based model for a PMDC motor.
2. For the PMDC motor develop a model based on system identification using

open-loop (OL) step response.
3. Design a speed controller for the physics-based model using Bode plot-

based loop-shaping techniques. Simulate this controller.
4. Redesign the speed controller for the identified model, simulate this con-

troller, and implement it practically. Compare results.

The block diagram of the control system is shown in Figure 1.1.

Section 2.2 lists the steps that help achieve the above-stated goals. Sections 2.3
onwards fill in the technical background needed to execute these steps.

2.2 Exercises

2.2.1 To do at home

Q1 Verify equations (2.2) and (2.3) using Figure 2.2, and determine the numer-
ical values using Table 1.1.

ωref +
Controller Plant

u ω(s)

−

Figure 2.1: CL system to be simulated.

19



September 10, 2013 EE380 (Control Lab) IITK Lab Manual

Q2 Design using Bode plot-based loop-shaping techniques a controller of the
minimum order possible to control the speed of the given motor for the fol-
lowing time domain specifications: ess ≤ 2%, ts ≈ 0.5 s (you have upto 5%
tolerance on ts), Mp ≤ 20%.

A 5-cycle semilog graph paper is provided at the end of this manual.

Q3 Simulate the continuous-time controller designed above using GNU Oc-
tave. That is, simulate the CL system of Figure 2.1. You can use such GNU
Octave functions as series, feedback, cloop, conv, etc. For example,

step(feedback(series(tf(1,[1,1]),tf(1,[2,1])),tf(1,1)));

If the closed-loop system performance in simulation is not as desired, you
may need to redesign your controller.

Q4 Discretize the continuous-time controller with the sampling period Ts. See
Section 2.5.

Q5 With the discretized version, perform a simulation of digital control of the
continuous-time plant using the m-file easysim.m provided.

Plot your results as two subplots with ω versus t in the upper subplot and
u versus t in the lower subplot.

Do you think that your digitally-controlled closed-loop system will be stable
in practice? Will it provide in practice the same performance as did the
continous-time version in simulation?

Q6 Write the digital controller in C.

What do you think is the difference between Q3 and Q5?

2.2.2 To do in lab

Q7 Write a code to apply a step voltage to the motor. Run the motor in OL.

Q8 Identify the values of Km and τm using the OL step response. See Sec-
tion 2.4.

Q9 For the identified model, redesign your controller using loop-shaping on
the graph paper you used in your homework.

Q10 With the discretized version of the above-redesigned controller, perform a
simulation of digital control of the continuous-time identified plant using the
m-file easysim.m.

Plot your results as two subplots with ω versus t in the upper subplot and
u versus t in the lower subplot, and show this plot to the instructor.

Q10 dropped for 2013

Q11 Program the lab-designed digital controller and run the setup.
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V(s) + 1
sLa + RΣ

Kt
I(s) T(s) +

TL(s)
− 1

Js + B

ω(s)

Kb

−

Figure 2.2: Block diagram of a PMDC motor. RΣ includes the armature resistance
Ra and other resistances as explained in Section 1.6.

Plot your results as two subplots with ω versus t in the upper subplot and
u versus t in the lower subplot, and show this plot to the instructor.

Q12 Compare the performance of the controller designed for the identified
model in simulation and in experiment. Fill the following table:

Mp [%] ess ts [s] Sketch of response ω
vs. t and u vs. t

Simulation

Experiment

Ideally, this comparison is done by plotting the two plots of ω versus t on
one subplot and the two plots of u versus t on the other subplot.

Q13 Conclusions: Is the physics-based model a good match to the plant? If
not, what do you think we have ignored that has lead to the difference?

2.3 Physics-based model of the DC motor unit

Since the inductance La is very small1, by neglecting La, from Figure 2.2, the
transfer function (TF) from the input voltage V(t) to the speed ω(t) of the mo-
tor shaft is

ω(s)
V(s)

=
Km

τms + 1
(2.1)

with

Km =
KT

R∑B + KTKb
, (2.2)

τm =
R∑ J

R∑B + KTKb
(2.3)

Here, Km is the motor gain constant in rad/s/V, τm is the motor time constant
in seconds, KT is the torque constant in N ·m/A, R∑ is the resistance in the
armature path in ohms as explained in Section 1.6, B is the viscous-friction co-
efficient of the motor rotor with attached mechanical load in N ·m/(rad/sec),

1When is an inductor considered small? When the time constant due to this inductor is neg-
ligible in comparison to the remaining time constants in the TF of the system, this inductor is
considered neglibly small. It can be verified using the data provided in and near Table 1.1 that for
this setup, J/B� La/RΣ
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J is the moment of inertia of the motor rotor with attached mechanical load
kg ·m2, Kb is the back emf constant in V/(rad/sec).

2.4 System identification

As we know that the motor transfer function is theoretically of first order as
in Equation (2.1), we can identify Km and τm from the V-to-ω step response as
follows:

Step 1 Apply a step input of magnitude R volts from the microcontroller to
the motor.

This is achieved by generating a number r within the microcontroller that is
proportional to R volts. The microcontroller converts r into a suitable duty
ratio that is then applied to the H-bridge. The H-bridge will then — on the
average within each sampling interval — apply a DC voltage of R volts to
the motor.

Step 2 Plot the data of motor speed versus time. This data comes from the
encoder to the microcontroller that, in turn, sends to the PC via UART. See
Section 1.7.2.

Step 3 If the armature voltage-to-speed TF is indeed first order, and of the form
K/(τs + 1), then the speed will be the following function of time:

ω(t) = RK(1− e−t/τ) (2.4)

Therefore, τ and K can be obtained from the plot of ω versus t as

• τ is the time where the speed is 0.6321ω(∞)

• RK = ω(∞).

To check that the response is indeed first order, we can plot ω generated by
Equation (2.4) on the plot of Step 2, and see how closely the two plots match.
We may even tweak τ and K to find the best match between the two plots.

2.5 Discretized version of the controller

The controller we design will be in the form of a TF. To program this controller
equation in the microcontroller, we need to recognize that the microcontroller
controls the motor by sampling the motor states periodically with a sampling
period of Ts seconds, and that this sampling period may affect the form of the
controller equation in the microcontroller.

In particular, we “discretize” the controller equation. That is, we convert the
equation from continuous-time form to a discrete-time form. We perform this
discretization through the following steps: convert the controller into a state-
space equation, discretize this state-space equation, and use this discretized
equation for a time-domain recursion. We saw this technique in EE250. Here
we recap this technique.

22



September 10, 2013 EE380 (Control Lab) IITK Lab Manual

2.5.1 Conversion from transfer function to state-space

Consider the following TF

G(s) =
Y(s)
U(s)

=
a1s + a0

s2 + b1s + b0

We wish to find a state space model whose input is u(t) and output is y(t), and
whose TF is G(s). The following is one way to accomplish this goal:

1. Introduce an intermediate variable X(s) thus:

G(s) =
Y(s)
U(s)

=
Y(s)
X(s)

X(s)
U(s)

2. Let
X(s)
U(s)

=
1

s2 + b1s + b0
and

Y(s)
X(s)

= a1s + a0

3. From the last step above, we can write the following:

s2X(s) = U(s)− b1sX(s)− b0X(s)
Y(s) = a1sX(s) + a0X(s)

4. Using this last step, we can construct the following simulation diagram:

a01
s

1
s

b1

b0

U(s)
+
− −

a1

+

+
Y(s)X(s)sX(s)s2X(s)

Note that here, the block containing the 1/s represents integration opera-
tion. Books show either of the following two equivalent blocks:

1
s

∫
=

Strictly speaking, the 1/s is used s-domain block diagrams, while the
∫

is
used in time-domain block diagrams.

5. In the block diagram, write the time-domain quantities u(t) and y(t) as
shown below, and assign a state variable to the output of each integrator.

a01
s

1
s

b1

b0

U(s)
+
− −

a1

+

+
Y(s)X(s)sX(s)s2X(s)

x1x2 = ẋ1ẋ2 y(t)u(t)
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For example, we start assigning at the output of the right-most integrator,
and go left.

6. Write the differential equations based on the time-domain quantities in the
simulation diagram:

ẋ1 = x2

ẋ2 = −b0x1 − b1x2 + u
y = a0x1 + a1x2

This gives us the following state-space (SS) model:

ẋ =

[
0 1

−b0 −b1

]
x +

[
0

1

]
u with x =

[
x1

x2

]
(2.5)

An easy way is to use tf2ss in GNU Octave or Matlab

2.5.2 Discretization of the state-space equation

Given the state-space equation ẋ = Ax + Bu, use Euler’s approximation to
write ẋ as ẋ ≈ x(t+∆t)−x(t)

∆t . Then, write this state-space equation as x(t+∆t) ≈
(A∆t + I)x(t) + B∆tu(t). This approximation works well if ∆t is sufficiently
small. As a rule of thumb, ∆t should be at most one-tenth or one-twentieth of
the smallest time constant of A.

2.5.3 Time-domain recursion

The equation x(t+∆t) ≈ (A∆t+ I)x(t) + B∆tu(t) gives the following formula
for recursion, with Ts = ∆t:

x(k + 1) = (ATs + I)x(k) + BTsu(k)

For example, Equation (2.5), on discretization, has the following form that is
ready for recursion:

x1(k + 1) = x1(k) + Tsx2(k)
x2(k + 1) = −b0Tsx1(k) + (1− b1Ts)x2(k) + Tsu(k)

In our simulations, we may use Ts = 0.002 s

2.6 Simulation

The discrete-time controller will work in practice on a continuous-time plant.
However, the continuous-time plant is not available at home. Therefore, we
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START

TIME = kTs for
some integer k?

Run
complete?

N

Simulation of
continuous-
time plant
dynamics

N

Update
control

u(t) = uk
Y

STOP
Y

Figure 2.3: Scheme for simulation of digital control of continuous-time system,
adapted from [3]. The control input u(t) is updated at each time kTs, and then held
until time (k + 1)Ts.

instead test the digital control of the continuous-time plant in simulation. The
simulation scheme is shown in Figure 2.3 and is implemented in the m-file
easysim.m. which runs on MATLAB and GNU Octave.

2.7 Program listings

2.7.1 easysim.m

% easysim.m: Simulates digital control of continuous-time system
% without needing Matlab’s Control System Toolbox. Uses only
% Euler’s approximation. Runs in Matlab and GNU Octave.
%
% PRECONDITIONS: Tp < Tc/10; Tc < Tmin/10. Here, Tmin is smallest
% time constant of CL system. User needs to convert plant and
% controller TFs to SS.
%-------------------------------------------------------------
clc; clear all; close all;
% ------------------- Declarations ---------------------------
%
% Plant transfer function K/(s+w)
K = 100; w = 1;
% State space model of plant is
%
% xpdot = -w*xp + up;
% yp = K*xp;
%
% The suffix ‘‘p’’ represents plant.

% Controller will sample plant states every Tc seconds
Tc = 0.01;
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% We will control the plant for tcfin seconds
tcfin = 5;

% Step size Tp used for numerical integration of plant
% differential equation using Euler’s approximation.
Tp = 0.00001;
% We will numerically integrate plant differential
% equation for Tc seconds.

% Controller TF is Cs = (Kp*s+Ki)/s
Kp = 0.11; Ki = 1.737;
% State-space model of controller is
%
% xcdot = uc;
% yc = Ki*xc + Kp*uc;
%
% The suffix ‘‘c’’ represents controller.
%-------------------------------------------------------------
%-- Simulate continuous-time plant discrete-time controller --

sd = 100; % Desired motor speed in rad/sec.
sa(1) = 0; % Initial actual speed (sa = yp).
xc(1) = 0; % Initial state of controller.
yc(1) = 0; % Intial output of controller.
xp(1) = 0; % Initial state of plant.
for k = 1:tcfin/Tc
uc(k) = sd - sa(k);
xc(k+1) = uc(k)*Tc + xc(k);
yc(k) = Kp*uc(k) + Ki*xc(k);
% Hold last sample of controller output:
up = yc(k);
% Numerically integrate plant equation holding the last
% controller output as the input to the plant.
for i = 1:Tc/Tp-1
xp = (1-Tp*w)*xp + Tp*up;
% This is the equation
% xp(k+1) = (1-Tp*w)*xp(k) + Tp*up;

end
yp(k) = K*xp;
sa(k+1) = yp(k);

end

t = (0:tcfin/Tc)*Tc;
plot(t,sa); grid(gca,’minor’);
print -depsc Tc0-0001.eps
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Chapter 3

Experiment 2: Speed of
PMDC motor tracks reference
sinusoid

3.1 Goals

Recognition of dead zone. Identification of parameters of mathematical model
of a PMDC motor using least squares estimation (LSE). Design and implemen-
tation of speed controller for the identified model using loop-shaping tech-
niques. Speed tracks a reference sinusoid.

3.2 Questions

3.2.1 To do at home

Q1 Write down the identified mathematical model you used in Experiment 1.

Q2 In the lab, we will apply a sinusoidal voltage from a function generator
(FG) to the dsPIC microcontroller’s analog input. We will want the motor’s
speed to track this sinusoidal input.

Design using loop-shaping, a controller of first order such that the closed-
loop system will track sinusoids of frequencies upto 7 Hz with ess ≤ 2%
(in magnitude). For the settling time (defined as “time to enter the x% tube
with the intention of remaining in it”) do the best you can achieve, given the
other specifications, and given that the imperfections of the plant are what
they are. Hint: See EE250 lecture notes for a solution to this problem.

Q4 Discretize the continuous-time controller using Euler’s approximation.
Use tf2ss.
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Q5 With the discretized version, perform a simulation of digital control of the
continuous-time plant using the m-file simsine.m. Apply reference sinu-
soids of magnitude = 150 rad/s, and about 4 frequencies (in Hz): 1, 3, 5, 7.
Modify simsine.m to suit your purpose. Populate the following table.

Frequency of reference sinusoid
of amplitude 150 rad/s [Hz]

1 3 5 7

Amplitude of rotor speed ω in
closed loop [rad/s]

Magnitude of control u [V]

If the desired performance is not achieved, then repeat Q2 onwards. Else,
proceed to Q6.

In the lab, observe the frequencies up to which tracking happens well.

Q6 Write the digital controller in C.

Q7 SYSTEM IDENTIFICATION USING LSE: Supply various values to K, a, b in
the file sysid.m, execute this file in GNU Octave, and compare the resulting
values of K, a, b with the supplied values. Do you think that sysid.m is
doing a good job of estimating the supplied values?

Q8 Assume that the plant TF obtained in Experiment 1 is 32.286/(0.052s + 1).

A voltage waveform is applied to the open-loop system from a function gen-
erator. Three sets of u – ω data are obtained into files named tri4fg5.log,
tri8fg5.log, and rect4fg5.log. These data correspond respectively to tri-
anglular waveform of u ≈ 4 V amplitude, triangular waveform of u ≈ 8 V
amplitude, and rectangular waveform of u ≈ 4 V amplitude.

To see the effect of the deadzone, plot the contents of each of the .log files
using readplot.m, and sketch your results below.

ω vs. t and u vs. t from
tri4fg5.log

ω vs. t and u vs. t from
tri8fg5.log

ω vs. t and u vs. t from
rect4fg5.log

Then, use the attached file readSID.m that is an amalgam of readplot.m and
sysid.m to populate the following table.
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dsPIC30F4012

PWM
Direction

u 2
Motor module

2Q H-bridge

Quadrature optical encoderQEI

Function generatorADC

Motor unit
ωv

Figure 3.1: Block diagram of the experimental setup as applicable to the task of
least squares estimation. The signal u is generated either by a program or is the
output of the ADC. The motor unit comprises the PMDC motor with gear.

FG
ADC

(signed mode)
[0, 5] V

9.0*AD_value()/511
[−511,+511] [−9,+9] V

u

Figure 3.2: how the output of the FG is converted into a u of desired value.

Type of TF TF

Parameters of step response

ω(∞)
[rad/s]

Sketch of step re-
sponses (all in one)
(unfiltered ones)

TF from Exp-t 1

TF from triangle of
4 V amplitude

TF from triangle of
8 V amplitude

TF from rectangle
of 4 V amplitude

3.2.2 To do in lab

Q9 We will apply a triangular voltage waveform to the armature of the PMDC
motor. While a code can be inserted into main-prog.c to generate this wave-
form internally inside the µC, we will instead input the waveform from a
function generator as shown in Figure 3.1.

Insert the code u = 9.0*AD_value()/511; into the section devoted to the
controller code in main-prog.c1. Configure the FG to output a triangular
waveform with an amplitude of 2.5 V, offset of 2.5 V, and frequency of 1 Hz.
To configure the 2.5 V offset, you can use the fact that at this offset the pulley
turns as much in the clockwise direction as in the anticlockwise direction,
while if the offset is not perfect the pulley has a net creep in one direction.
This configuration needs to remain undisturbed throughout the experiment irre-

1Note that the code u = 9/511*AD_value(); does not give the same results.
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spective of the waveform used. Figure 3.2 shows how this configuration helps
obtain the desired u.

Run the plant in open-loop mode. Record the input-output data (that is,
u, ω) into a file named expt2-q9.log. Our FG outputs by default a wave-
form of about 4 V peak-to-peak value, though the display of the FG says 5
V. You will use the data in expt2-q9.log to identify the plant parameters.

Q10 Identify the plant parameters using least squares estimation.

In the line [y3,t3] = step(tf(31.42/0.07,[1,1/0.07])); of readSID.m,
use the plant parameters that you obtained in Q8 of Experiment 1. Then use
readSID.m to populate the following table, and note which step response is
closest to the step response of the TF from Q8 of Experiment 1.

Type of TF TF
Parameters of step response

ω(∞) [rad/s] Sketch of step responses

TF from Exp-t 1

TF from triangle
without filter in
readSID.m

TF from trian-
gle with filter in
readSID.m

Q11 Approximately fit a first order TF to the unit step response of the TF corre-
sponding to the triangle (8 V ampl, with filter in readSID.m) in Q10, similar
to how you did in Q8 of Experiment 1.

Q12 With the first order TF in Q11, redesign your controller using loop-
shaping for the motor to track sinusoids upto 7 Hz with ess ≤ 10%. Hint:
You do not need a semilog graph paper here.

Q12a With the discretized version of the controller from Q11, perform a simu-
lation of digital control of the continuous-time plant as you did in Q5.

Frequency of sinusoid of
magnitude 10 rad/s [Hz]

0.5 1

Amplitude of output ω
of CL system [rad/s] (in
simulation)

Amplitude of control u
[V] (in simulation)

Q12a dropped for 2013.
In real world controller
design and implemen-
tation, this simulation
is done to estimate the
control effort needed
when the controller is
deployed on the setup.

Q13 Program the discretized version of the controller from Q10 into the dsPIC,
run the setup, if necessary, very slightly adjust the offset knob of the FG so
that there is no net creep of the pulley in any one direction, and populate the
following table.

In main-prog.c, you will need to comment out the part u =
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9.0/511*AD_value();, write your controller in the appropriate place,
and uncomment the two lines

R = AD_value(); // In signed mode, ADC maps [0,5] V to [-511,+511].
R = 100.0*R/511; // R = 100*sin(w_in*t) rad/sec; 100 is max speed.

that correspond to this experiment.

Frequency of sinusoid of magnitude 10
rad/s [Hz]

0.5 1

Magnitude of output ω of CL system
[rad/s] (in experiment)

Magnitude of control u [V] (in experiment)

Q14 Conclusions: What is the largest frequency sinusoid that this CL system
is able to track? What is limiting this frequency?

3.3 Dead zone in the Vm versus u characteristic

The dead zone in the Vm versus u characteristic of Figure 1.7 does not matter
when we control the PMDC motor for its speed to track a step as the speed
is needed to be at a large value and u quickly becomes large enough, without
dwelling in the dead zone.

In the position control of the PMDC motor (Chapter 9), however, u becomes
small when the desired position is reached. If u becomes smaller than 2 volts,
then Vm will be zero as shown in Figure 1.7, making the position control system
unresponsive.

Similar to the case of position control, when the speed wishes to track a sinu-
soid, the reference speed, and therefore u, dips to near-zero values before grad-
ually going to larger values. In this case, the dead zone can be experienced by
using small input voltages, for example, u = 3 sin ωt.

To help the motor to remain responsive when the applied armature voltage
reaches near zero values, we could either

1. use an integral component in the controller, or
2. add the following code in main-prog.c before or after the if condition used

for limiting the duty ratio.
if(u<0&&u>-2) u = u - 2; else if(u>0&&u<2) u = u + 2;

Dead zone compensation is addressed in another experiment (Chapter 5).

3.4 System identification

The plant TF (Equation 2.1) has two parameters, Km and τm, that need to be
identified. We use from [4, pages 503–505] a technique to obtain the best esti-
mate of the parameters of a transfer function (TF) in the least squares sense.

31



September 10, 2013 EE380 (Control Lab) IITK Lab Manual

Consider the second order TF

Y(s)
U(s)

=
K

s2 + as + b
. (3.1)

Using the bilinear transformation s = 2
Ts
( z−1

z+1 ) with sampling period Ts on (3.1)
gives

Y(z)
U(z)

=
(z2 + 2z + 1)K

4
T2

s
(z2 − 2z + 1) + 2

Ts
(z2 − 1)a + (z2 + 2z + 1)b

.

The inverse z-transform with n = 2, 3, . . . , N and k = n gives the discrete-time
equation

γn = φT
n σ

where
γn =

4
T2

s
(y(k)− 2y(k− 1) + y(k− 2)) ,

φn =


u(k) + 2u(k− 1) + u(k− 2)

− 2
Ts
(y(k)− y(k− 2))

−(y(k) + 2y(k− 1) + y(k− 2))

 , (3.2)

and σ = ( K a b )T . σ is estimated using the data set of observed outputs
y(0), y(1), . . . , y(N), and applied inputs u(0), u(1), . . . , u(N). The best estimate
in the least squares sense σ̂ of σ is σ̂ = (ΦTΦ)−1ΦTY, where Y and Φ are

Y =
[

γn γn+1 . . . γN

]T
, Φ =

[
φn φn+1 . . . φN

]T
.

The m-file sysid.m contains sample code for system identification. In sysid.m
the input u(k) is applied to an example plant; the output y(k) is assumed to
contain noise. Identification using these input and output values results in
values of the system parameters that are very close to those of the plant.

3.5 Program listings

3.5.1 sysid.m

% sysid.m: Implements least squares system identification. The
% method is taken from Gene F. Franklin, J. David Powell, and
% Michael L. Workman. Digital Control of Dynamic Systems.
% Addison-Wesley, 3rd edition, 1998, pages 503 -- 505.
%
% Uses only Euler’s approximation. User needs to convert plant TF
% to SS. Works in GNU Octave as well as MATLAB.
%
% PRECONDITIONS: Tc < Tmin/10. Here, Tmin is the smallest time
% constant of the CL system, and Tc is the period at which the uC
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% samples the plant states. In the lab manual Tc is denoted Ts.
%----------------------------------------------------------------

clc; clear all; close all;

% ------------ Begin declarations -------------------------------

% Plant transfer function K/(s^2 + a*s + b)
% Parameter vector X = [K a b]’

% K=487e2; a=14.7+1e2; b=14.7e2;
K = 100; a = 5; b = 10;
% State space model of plant is
%
% x1pdot = x2p;
% x2pdot = -b*x1p -a*x2p + up;
% yp = K*x1p;
%
% The suffix ‘‘p’’ represents plant, and the suffix ‘‘c’’
% represents controller.

% The plant states are sampled every Tc seconds
Tc = 0.01;
% We control the plant in open-loop for tcfin seconds
tcfin = 5;

%------ Declarations complete ---- Start simulation -------------

% Generate triangular control input
t = (1:tcfin/Tc)*Tc;
[Rt Ct] = size(t);
uc(1) = 0;
sgn = 1;
for i = 2:Ct
uc(i) = uc(i-1) + sgn * 0.5;
if(uc(i)> 9.0)
sgn = -1;

elseif( uc(i) < -9 )
sgn = 1;

end
end

% Initialize
yp(1) = 0; % Initial actual speed.
x1p(1) = 0; x2p(1) = 0; % Initial state of the plant.

% Recursion
for i = 1:tcfin/Tc
x1p(i+1) = x1p(i) + x2p(i)*Tc;
x2p(i+1) = -b*Tc*x1p(i) + (1-a*Tc)*x2p(i) + Tc*uc(i);
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yp(i) = K*x1p(i);
end

% Plot
plot(t,uc,t,yp); grid; legend(’Control input’,’Actual speed’);
print -depsc sysid.eps

% We now have a set of input-output data from the plant. We use
% this data to perform system identification

y = yp; u = uc;
k = 3;
for n =1:Ct-3
Y(n,1) = (2/Tc)^2 * (y(k) - 2*y(k-1) + y(k-2));
P(n,:) = [( u(k) + 2*u(k-1) + u(k-2)) ...

(-2/Tc*( y(k)-y(k-2) ) ) -( y(k)+2*y(k-1)+y(k-2) )];
k = k+1;

end

X = (P’ * P)^(-1) * P’ * Y % X = [K a b]’

3.5.2 simsine.m

% simsine.m: Simulates the response to a sine reference input
% under the digital control of continuous-time system. Uses only
% Euler’s approximation. Runs in GNU Octave.
%
% PRECONDITIONS: (1) User needs to convert plant and controller
% TFs to SS. (2) Tp < Ts/10; Ts < Tmin/10. Here, Tmin is the
% smallest time constant of the CL system, Tp is the step size of
% numerical integration of the plant dynamics, and Ts is the step
% size of the numerical integration of the closed-loop system
% dynamics and equals the chosen sampling interval.
%----------------------------------------------------------------

clc; clear all; close all;

% ------------------ Declarations -------------------------------
% Plant transfer function Kp/(s/wp+1)
Kp = 40.714; wp = 14.3;
% Using tf2ss in Octave 3.2.4
[ap,bp,cp,dp] = tf2ss(Kp,[1/wp,1]);
% This line to be changed appropriately for Octave >= 3.6.0.

% State space model of plant is
%
% xpdot = ap*xp + bp*up;
% yp = cp*xp + dp*up;
%
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% The suffix ‘‘p’’ represents plant.

% Controller samples plant states every Ts seconds
Ts = 0.002;

% The plant is controlled in closed-loop for tsfin seconds
tsfin = 20;

% Step size Tp used for numerical integration of plant
% differential equation using Euler’s approximation.
Tp = 0.00001;
% We numerically integrate plant differential equation for
% Ts seconds using a step size of Tp.

% Controller TF is
%
% (s/z + 1)
% Kc * ---------
% (s/p + 1)

Kc = 50/40.714; z = 44; p = 14.3;

% Controller state space equation
%
% xcdot = ac*xc + bc*uc;
% yc = cc*xc + dc*uc;
%
% Using tf2ss in Octave 3.2.4:
[ac,bc,cc,dc] = tf2ss(Kc*[1/z,1],[1/p,1]);
% This line to be changed appropriately for Octave >= 3.6.0.
%
% The suffix ‘‘c’’ represents controller.

%---------------------------------------------------------------
% Simulate continuous-time plant discrete-time controller
%---------------------------------------------------------------

% Specify the sampling instants
t = (0:tsfin/Ts)*Ts;

% Desired motor speeds in rad/sec at sampling instants
sd = 150*sin(2*pi*7*t);

% Initial conditions
sa(1) = 0; % Initial actual speed (sa = yp).
xc(1) = 0; % Initial state of controller.
yc(1) = 0; % Intial output of controller.
xp(1) = 0; % Initial state of plant.

% Recursion

35



September 10, 2013 EE380 (Control Lab) IITK Lab Manual

for k = 1:tsfin/Ts
uc(k) = sd(k) - sa(k);
xc(k+1) = (1+ac*Ts)*xc(k) + bc*Ts*uc(k);
yc(k) = cc*xc(k) + dc*uc(k);
% Hold last sample of controller output
up = yc(k);
% Numerically integrate plant equation holding
% the input as last controller output:
for i = 1:Ts/Tp-1
xp = (1+Tp*ap)*xp + Tp*bp*up;
yp = cp*xp + dp*up;
end
sa(k+1) = yp;
end

t = (0:tsfin/Ts)*Ts;
subplot(2,1,1); plot(t,sd, t,sa); grid(gca,’minor’);
legend(’reference’,’speed’);
subplot(2,1,2); plot(t(:,1:size(yc,2)),yc); grid(gca,’minor’);
legend(’controller output’);
print -depsc Ts0-0001.eps

% Determine the amplitudes of sa and yc after a transient.
max(sa(:,0.8*tsfin/Ts:tsfin/Ts)),
max(yc(:,0.8*tsfin/Ts:tsfin/Ts))

3.5.3 readSID.m

% readSID.m: Is an amalgam of readplot.m and sysid.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all, close all, clc

% ---------------------- Step 1 ----------------------------
% ------------ This part is from readplot.m ----------------

x = dlmread(’terminal.txt’);

% Determine the number of rows and columns of x.
% If all went well, the number of rows will be equal to 1.
[rows,cols] = size(x);

% Truncate x so that x has an even number of columns.
if cols/2 > floor(cols/2)
x = x(:,1:cols-1);
cols = cols-1;

end
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% Extract columns number 1, 3, 5, ... into a vector w,
% and columns number 2, 4, 6, ... into a vector u.
w = x(1,1:2:cols-1); % This is the vector of speeds
u = x(1,2:2:cols)/10; % This is the vector of voltages.

% Calculate times at which to plot speed and voltage.
Tp = 0.002; t = 0:Tp:Tp*(cols/2-1);

% ---------------------- Step 2 ----------------------------
% ------------- This part is from sysid.m ------------------

% We now have a set of input-output data from the plant. We
% use this data to perform system identification.

y = w; u = u;
k = 3;
for n =1:cols/2-3
Y(n,1) = (2/Tp)^2 * (y(k) - 2*y(k-1) + y(k-2));
P(n,:) = [( u(k) + 2*u(k-1) + u(k-2)) ...

(-2/Tp*( y(k)-y(k-2) ) ) -( y(k)+2*y(k-1)+y(k-2) )];
k = k+1;

end

X = (P’ * P)^(-1) * P’ * Y; % X = [K a b]’

[y1,t1] = step(tf(X(1,:),[1,X(2,:),X(3,:)]));

% ---------------------- Step 3 ----------------------------
% Redo the system identification on a low-pass filtered
% version of w.

om = 25; x(1) = 0;
for k = 1:cols/2
x(k+1) = (1-om*Tp)*x(k) + om*Tp*w(k);
end

w = x(1:cols/2); % Filtered w.

% Use data of u and filtered w to do system identification.

y = w; u = u;
k = 3;
for n =1:cols/2-3
Y(n,1) = (2/Tp)^2 * (y(k) - 2*y(k-1) + y(k-2));
P(n,:) = [( u(k) + 2*u(k-1) + u(k-2)) ...

(-2/Tp*( y(k)-y(k-2) ) ) -( y(k)+2*y(k-1)+y(k-2) )];
k = k+1;
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end

X = (P’ * P)^(-1) * P’ * Y; % X = [K a b]’

[y2,t2] = step(tf(X(1,:),[1,X(2,:),X(3,:)]));

[y3,t3] = step(tf(31.42/0.07,[1,1/0.07]));

plot(t1,y1,’r’,t2,y2,t3,y3,’g’); grid(gca,’minor’);

legend(’Step response of TF using u and w’, ...
’Step response of TF using u and filtered w’,...
’Step response of TF identified in Exp-t 1’);
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Chapter 4

Experiment 3: Ziegler-Nichols
tuning of speed controller of
PMDC motor

4.1 Goals

To apply a Ziegler-Nichols tuning (ZNT) methods to tune the parameters of a
PID controller of the speed of a pmdc motor.

4.2 What is controller tuning?

Figure 4.1 shows PID control of a plant.

“If a mathematical model of the plant can be derived, then it is possible to
apply various design techniques for determining parameters of the controller
that will meet the transient and steady-state specifications of the closed-loop
(CL) system. However, if the plant is so complicated that its mathematical
model cannot be easily obtained, then an analytical approach to the design of a
PID controller is not possible. Then we must resort to experimental approaches
the tuning of PID controllers.”[5].

“The process of selecting the controller parameters to meet given performance
specifications is known as controller tuning.”[5].

In practice, tuning is used in the following three situations:

1. We have designed a controller and analyzed its performance on paper and
using simulation tools such as Matlab and GNU Octave. We wish to deploy
this controller on the actual plant. We find that this controller does not give
us the kind of behavior in practice that it gave in simulation. The design has
only brought us roughly near what we want. Tuning of the parameters of the
controller is needed to obtain the behavior that we saw in simulation. For
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Figure 4.1: The CL system. The ZNT methods help tune kp, TI , TD. The time con-
stant τ has two purposes. Firstly, it makes implementing the derivative controller
possible. Secondly, it helps create a low pass filter for high frequency noise. τ is
selected to be between 0.1TD and 0.2TD [9, page 161].

example, “Alogrithms parameters have to be tuned to adjust to current plant,
as the final plant always differs from the plant model assumed early in the
design process — when the original algorithm was selected” [6].

2. The plant model may not be known; so we may not have designed a con-
troller. We may use on-line estimation and tuning to stabilize the CL system.

3. We know that the plant belongs to a class of plants, and that for these plants
a certain kind of controller will work. So, we bypass the design stage and go
straight to tuning for a plant in this class. This is the situation that is addressed
by the two Ziegler-Nichols tuning (ZNT) techniques.

4.3 What the two ZNT methods do

The design specifications for both the ZNT methods is quarter amplitude decay
(QAD) [7]. What this means is that the tuned controller will impart the CL unit
step response a second overshoot whose ratio to the first overshoot is 25% [8,
page 240, Figure 4.14]1.

The ZNT rules “suggest a set of kp, TI , and TD that will give a stable operation
of the system. However, the resulting system may exhibit a large maximum
overshoot in the step response, which is unacceptable. In such a case we need
a series of fine tunings until an acceptable result is obtained. In fact, the ZNT
tuning rules give an educated guess for the parameter values and provide a
starting point for fine tuning, rather than giving the final settings for kp, TI and
TD.” [5].

The first method is a time-domain method, while the second is a frequency
domain method[7]. In the remainder of this section, we will describe these
methods based on [5].

Though [9, page 162] only says that the second method is valid only for open-
loop stable plants, we can see in the following that, as an “S” curve can be
obtained for only such plants, the first method too is valid only for such plants.

4.4 First method

This method applies to plants whose step response roughly resembles an “S”.

1The fifth edition of this book does not have a chapter on ZNT.
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Figure 4.2: Unit step response of the plant is needed for the first ZNT method. This
response is also known as the reaction curve of the plant. As the first ZNT method
uses these curves, the first method is also known as reaction curve method. See [9,
page 167] for another way of obtaining the reaction curve.

Table 4.1: ZNT rules for the First ZNT method [5, 7].

Controller kp TI TD

P
T

LK
∞ 0

PI
0.9T
LK

L
0.3

0

PID
1.2T
LK

2L 0.5L

Step 1: Obtain the unit step response of the plant in open loop (OL); see Fig-
ure 4.2.

Step 2: Determine T and L as shown, by drawing a tangent as shown to the
step response through the point of inflexion. Alternatively draw a tangent
to this curve of maximum slope.

Step 3: The approximate transfer function (TF) of the OL plant is

ω(s)
U(s)

=
Ke−Ls

Ts + 1

Step 4: Tune the PID controller parameters according to Table 4.1.

4.5 Second method

This method is also called the ultimate gain method. This method applies to
plants that exhibit sustained oscillations in CL under proportional control for
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Table 4.2: ZNT rules for the Second ZNT method [5, 7].

Controller kp TI TD

P 0.5kcr ∞ 0

PI 0.45kcr (1/1.2)Pcr 0

PID 0.6kcr 0.5Pcr 0.125Pcr

some value of kp > 0.

Step 1: Form the CL system with kp > 0, TI = ∞, and TD = 0.

Step 2: Apply a step input to the CL system and observe its response.

Step 3: With the step input on, increase the value of kp from 0 to some value
kcr (called the “critical gain” or “ultimate gain”) at which the CL system will
exhibit sustained oscillations.

Step 4: Determine the period Pcr of these oscillations.

Step 5: Tune the PID controller parameters according to Table 4.2.

4.6 A modification of the plant

As the identified plant model that we determined in Experiment 1 is of first
order of the form

G(s) =
Km

τs + 1
,

neither ZNT method is applicable to such a plant model.

At the time of preparing this write-up, we determined that the first ZNT
method gave a value of kp that made the CL system’s smallest time constant
to be of the same order as the sampling period 0.005 ms, and the CL system
was unstable. Indeed, any CL system, on digitization of the controller, remains
stable only if the sampling period is at most about one-tenth to one-twentieth
of the smallest time constant of the continuous-time CL system.

An unstable CL system meant that we would not have a meaningful experi-
ment with ZNT and DC motor control — not a happy situation.

In order to have a meaningful experiment, we prefix a transfer function H(s)
(called a shaping filter) that imparts dominant poles that are closer to the ori-
gin, as well as allows us to work with a problem that is amenable to the second
ZNT method too. Thanks to these poles, the kp obtained from the ZNT meth-
ods is such that the real part of the CL system’s dominant poles is almost 2
orders of magnitude smaller than the sampling frequency.
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H
-b
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M
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Figure 4.3: Block diagram of the plant for which we wish to tune a PID controller.
Here, unew is controller’s output, and uactual is numerical value of voltage applied
to motor’s armature. The duty ratio δ = uactual/Vs is input to the PWM module of
the dsPIC30F4012. The dsPIC outputs a PWM signal to the Solarbotics H-bridge
board. The H-bridge board is fed from a dc power supply at a voltage of Vs. The
H-bridge board outputs a variable-magnitude dc voltage Vreq to the PMDC motor.
The prefilter H(s) is not part of the plant model that we identified in Experiment
1 or 2. We have added H(s) here to make the plant model amenable to ZNT meth-
ods, as described in Section 4.6. Note that the u to ω path shown in this figure is
more accurate than that shown in Figure 3.1.

4.7 Questions

4.7.1 To do at home

Q1 Write down the voltage-to-speed TF identified in Experiment 1.
Note 4.1. This TF is the TF of the u-to-ω path in Figure 4.3.

Q2 Prefix H(s) = 29
/(

s2 + 10s + 29
)

to this TF.

Second ZNT method

Q3 Determine kcr using rlocus of GNU Octave upto the resolution of the hu-
man eye. Simulate the CL system in GNU Octave and determine kcr and Pcr.
Fill the following table.

Value of kcr
From rlocus

From simulation

Value of Pcr [s]
From rlocus

From simulation

Q4 Determine the three controllers (P, PI, PID).
Note 4.2. Form the PID controller as shown in Figure 4.1.

Q5 In GNU Octave, simulate the CL step response using any of tf, conv, step,
feedback, series, etc with each of these controllers; fill the following table.

Value of C(s) ts ess Mp
2nd overshoot
1st overshoot

P

PI

PID
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Q6 Based on the values of ts that you have in the above table, and given that
the sampling interval is 2 ms, do you think the CL system under digital
control will be stable?

Q7 Repeat Q5 using easysim.m and Ts = 2 ms. Is the CL system stable?

Q8 From the above table, which controller would you select to control your
plant?

Q9 Is the design specification of QAD satisfied by any of the three controllers?

Q10 Write the Euler’s approximation-based descretized versions of each of the
three controllers and H(s) in C code. You will take these codes to the lab.

4.7.2 To do in lab: Second ZNT method

Q11 Program the discretized version of H(s) in your dsPIC. Use the kcr ob-
tained in Q3. Give a step input and see the CL response. If sustained oscil-
lations of the CL system are not seen, then tune kcr until you hit a value that
provides sustained oscillations. Note this value of kcr and the corresponding
value of Pcr.

Q12 With the value of kcr and Pcr determined in Q11, form a PID controller.
Note 4.3. Note 4.2 applies here too.

Q13 Check using easysim.m that this PID controller works. Note its perfor-
mance in the following table.

Type of experiment ts
[s]

ess
[%]

Mp
[%]

2nd overshoot
1st overshoot

Simulation

This
question
dropped
for 2013

Q14 Program the digital controller from Q13 into the dsPIC and run the setup.
Record the results in the following table. Plot the necessary data.

Type of experiment ts
[s]

ess
[%]

Mp
[%]

2nd overshoot
1st overshoot

Practical

Q15 Explain the differences between practice and simulation, if any.

This question dropped for 2013
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Chapter 5

Experiment 4: Control of
speed using armature current

5.1 Goals

To control the speed of the pmdc motor using feedback of current.

5.2 Application of this problem

The area of sensorless speed control (SSC) uses the measurements of the voltage
V applied to the armature, and one of either armature current i or back emf E,
to estimate the motor speed ω:

1. Back emf speed control: V is turned alternatively on and off, as in the case of
our H-bridge circuit. During the on period, the motor gathers speed. During
the off period, a brief period is allowed to elapse until i dies down while the
rotor is coasting, and then the voltage is measured across the armature. This
voltage is the estimate Ê of the back emf. Then the estimate ω̂ of ω can be
obtained as Ê/Kb. Note that i is not measured in this method.

Commerical controllers, such as [10], exist for SSC of dc motor using feed-
back of back emf. Also, see, for example, [11] for some details.

2. Speed control using armature current: An estimate of the back emf is obtained
by measuring the armature current i and using the expression E = V − R∑i.

Commercial controllers, such as [12], exist for SSC of pmdc motor using IR
compensation. Also, see, for example, [13] for some details.

The advantage of SSC is that V and i can be measured using components that
are fixed in the motor circuit. On the other hand, speed is measured using
devices, such as encoders or tachogenerators. There are several drawbacks in
using these devices such as increased volume of the motor unit and lowered
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reliability as the encoders may go bad earlier than the motors. The latter draw-
back may be particularly significant where repair may not be possible, such as
in space applications.

5.3 Background

The equations that describe a pmdc motor are

V = L
di
dt

+ Ri + E (5.1)

J
dω

dt
= −Bω + T − TL (5.2)

Here, T = KTi, E = Kbω, and V is the Vreq of Figure 4.3. Depending on the
situation, the load torque TL may either be treated as a disturbance or as an
input. In this experiment, we will treat it as a disturbance.

The resistance R needs to be seen between the terminals across which the volt-
age V is applied. As explained in Figure 5.1, R = RΣ. Therefore, we have

V = L
di
dt

+ R∑i + E

We see from Figure 2.2 that there are two time constants in the V to ω transfer
function of the pmdc motor. These are the electrical time constant τe = L/RΣ
and the mechanical time constant τm = J/B. As a rule of thumb, in a general
pmdc motor, τe is about one tenth τm. However, in our case, the τe is 1.9× 10−5

s, while τm is 0.44 s. That is, transients in i settle about 104 times as fast as
transients in ω, meaning that τe can be ignored without any loss of accuracy.

To remove τe from discussion, we set L = 0, resulting in V = RΣi + Kbω. This
equation shows that, when τe ≈ 0, ω can be calculated as ω = V−RΣi

Kb
. We can

use this equation to determine ω̂ and use this estimate for feedback control of
ω as shown in Figure 5.2.

5.4 Questions

5.4.1 To do at home

Q1 Using the values of Km and τm that you determined from the OL step re-
sponse in Experiment 1, determine the values of B and RΣ as follows.

Solve equations (2.2) and (2.3) simultaneously to determine the values of
R∑ = RH + Rm + Rsens and B. Use the values of J, KT , Kb from Table 1.1. Do
not use the value of B calculated in Section 1.6.

If you obtain B < 0, then you will need to find Km and τm once again using
the method of Section 2.4. As you cannot do this at home, use the value of B
given in Section 1.6.
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S1 S2

S3 S4

Vs

Rs

Motor

S1 S2

S3 S4

Vs

Rs

Motor

Figure 5.1: How the H-bridge is used to switch the direction of rotation of the
motor shaft. With the switches S2 and S3 open, the pulse width modulated joint
opening and closing of switches S1 and S4 make the motor turn in one direction
with varying speed. Similarly, with the switches S1 and S4 open, and S2 and S3
closing jointly by the PWM signal the motor turns in the other direction. In either
direction, the effective resistance RΣ of the motor’s armature includes the resis-
tance RH of the two closed switches, the resistance Rs of the sensing resistor, and
the resistance Rm of the motor armature, as mentioned in Section 1.6. Also, the
Vreq of Figure 4.3 is actually the time average of the PWM voltage seen between
the terminal labeled Vs and ground in the above diagram, and not the voltage im-
mediately across the motor terminals.

Remark 1. The equivalent internal resistance (RH) of the L298 as measured by
Solarbotics is as follows1:

IC voltage

9 V 12 V 18.95 V

Equivalent internal resistance (Ω) 2.86 2.39 2.00

However, our results of Experiment 1 give us a value of RH that is quite different
from what the above table says.

Q2 Write down the controller that you designed in Experiment 1. Show the
discretized version of this controller.

Q3 Simulate your closed-loop control of motor speed in two ways under this

1Page 9 of solarbotics_l298_compact_motor_driver_kit.pdf that is available at
http://www.solarbotics.com/products/k_cmd/resources/
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ωref +
Controller

u
Motor module

ω

+
RΣ

isens−
1

Kb

ω̂
−

Figure 5.2: Block diagram of control of speed using feedback of armature current.

controller using a modification of easysim.m:

Q3.1 Using feedback of speed.

Q3.2 Using feedback of current with ω̂ = u−RΣi
Kb

, and

Plot ω and ω̂ on one figure.

5.4.2 To do in lab

Verify that your experimental setup is connected as appropriate for this
experiment.
“Appropriate” here means that the lead from the sensing resistor Rs needs
to be connected to CN4 input pin 1 as shown in Figure 5.3, apart from the
usual connections for speed control.

Uncomment the following parts of main-prog.c
// IV = AD_value(); // Read voltage across Rs=4.7ohm.
// IV = 5*(511 + IV)/1022; // Convert signed to unsigned.

and
// Is = IV/4.7; // Convert voltage to current.
// IF = (1-5.0*T)*IF + 5.0*T*Is; // Low-pass filter.

There are other parts of main-prog.c that you will uncomment at your
discretion.

Q4 Write a code to apply a step input to the motor. Run the setup in OL mode.
Identify the system parameters Km and τm by using the OL step response.

Q5 If Km and τm are different from those you saw in Experiment 1, calculate
the values of RΣ and B as you did in Q1.

Else, in the following, use the RΣ determined at home.

Q6 Control the motor in the following ways:

Q6.1 Using feedback of speed (as in Experiment 1).

Q6.2 Using feedback of current with ω̂ = (u− RΣisens)
/

Kb, and

Q6.3 Using feedback of current with ω̂ =
(

u− RΣ î
)/

Kb, where, î ≈
1

1.8 isens − 1
30 .

See Figure 1.7 and Section 1.5 for an explanation of this relation between
i and isens.
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You may need to tweak this relation between i and isens for your own
setup to obtain satisfactory results. See Section 5.6 for a systematic and
quick way to determine the relation between i and isens.

Q6.4 Using feedback of current with ω̂ =
(

u− RΣ î
)/

Kb, where, î ≈
2.5isens.

In each of the above cases, plot ω vs. t and ω̂ vs. t as subplots on figure, and
ω vs. t and u vs. t as subplots on another figure. That is, you will show us
two figures for each of Q6.2 through Q6.4.

In the control of motor speed, is the feedback of armature current an adequate
substitute for the feedback of motor speed?

5.5 Explanation for the C code related to currents

5.5.1 Reading the current through ADC

Here we explain the following C code.

IV = AD_value(); // Read voltage across Rs=4.7ohm.
IV = 5*(511 + IV)/1022; // Convert signed to unsigned.
Is = IV/4.7; // Convert voltage to current.

The 10-bit ADC in dsPIC30F4012 is capable of working with inputs in the range
[0, 5] V. There are two modes in which this ADC can work. These are signed
and unsigned modes. In signed mode the ADC maps [0, 5] V to the interval
[−511,+511]. In the unsigned mode the ADC maps [0, 5] V to [0,+1023].

With the experiment involving tracking a sinusoid in mind, we config-
ured the ADC to work in the signed mode. This configuration is done in
settings-prog.h that we keep unchanged throughout our lab. When we wish
to output unipolar signals from the ADC, we can either (a) reconfigure it in un-
signed mode or (b) allow it to work in signed mode, but provide an offset to its
ouput.We take this second approach in the above code.

5.6 Systematic method to determine i versus isens

For whatever reasons, isens in the block diagram of Figure 5.2 is not equal to i,
the armature current. From Figure 1.7 that we obtained through certain trials
before we developed these experiments, we estimated that

isens =
1

a(TL)
i− b(TL)

a(TL)

Thus, we can construct an estimate î of i using isens as

î = a(TL)isens + b(TL)
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and use this estimate to construct ω̂ as

ω̂ =
V − RΣ î

Kb
.

How to determine a and b? As we have two unknowns at each value of TL, we
need two equations in these unknowns. We can proceed as follows.

Step 1 Construct ω̂ as shown in Figure 5.4.

From this figure, we see that

ω̂(s) =
[

U(s)−
(

I(s)
a
− b

as

)
RΣ

]
1

Kb
,

with

I(s) =
1/RΣ

1 + KtKb
RΣ(Js+B)

U(s)

For u(t) being a step input of um V, the steady state value of ω̂ is

ω̂ssum =

[
um −

um/a

1 + KtKb
RΣB

+
bRΣ

a

]
1

Kb
(5.3)

In this equation, Kt, Kb, RΣ, B are known.

Step 2 Apply u(t) of a known magnitude and measure the corresponding
ω̂ssum . Then, only a and b remain as the unknowns in (5.3).

Thus, for example, for um = 7 V, we have the equation

a(Kbω̂ss7 − 7) = RΣb− 7
α

, where α = 1 +
KtKb
RΣB

.

and for um = 9 V, we have the equation

a(Kbω̂ss9 − 9) = RΣb− 9
α

.

Assuming that these two equations are linearly independent, we have

[
b

a

]
=

[
RΣ 7− Kbω̂ss7

RΣ 9− Kbω̂ss9

]−1 [
7

9

]
× α

Remark 2. Ideally, we need to determine a and b for a series of values of TL. But, in
our experiment, we restrict ourselves to TL = 0.
Remark 3. To determine ω̂ssum see if it is not enough to observe this value from only
the terminal.log file. This may save you the trouble of plotting ω̂.

51



September 10, 2013 EE380 (Control Lab) IITK Lab Manual

U(s) + 1
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−+
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ω̂

The part outside dsPIC30F4012

Figure 5.4: Block diagram to illustrate the procedure of Section 5.6.

5.7 Post-experiment discussion from 2011

In the experiment with ωref = 100 rad/s, we found that in Q6.2 ω̂ ≈ 100 rad/s
and ω ≈ 50 rad/s, while in Q6.3, in the best case, ω̂ ≈ 100 rad/s and ω ≈ 70
rad/s. Clearly, much improvement is needed. Prof. Avinash Joshi suggested
that such a large error is most likely due to even small errors in the i — isens
relationship used, or the neglected constant voltage drop across the brushes,
etc. We need to pursue this line of investigation.
Thanks 1. We thank Prof. Avinash Joshi for discussing with us the results of this
experiment. From this discussion, we learned that what we are doing in this exper-
iment goes under the name of speed control using IR compensation, and that IR
compensation, and thereby the speed control, is indeed difficult.
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Chapter 6

Experiment 5: Control of
armature current

6.1 Goals

To control the armature current of the pmdc motor at the desired value.

6.2 Application of the problem

The disturbance observer (DOB) that we see in Experiment 6 requires the arma-
ture current of the pmdc motor to be well-regulated. In the present experiment,
we attempt to make the armature current well-regulated.

Apart from the application in the DOB, a current loop, when present, is the
innermost loop in electric drives, the next outer one being the speed control
loop, followed by the position control loop, which is also the outermost loop
as shown in Figure 6.1. This three-loop structure is used also with motors other
than pmdc. This structure is used for tracking a given θd while restricting the
speed or current. When only control of speed is needed while constraining the
current, the outer-most loop can be removed. See, for example, [14, page 36].

6.3 Well-regulated current

Figure 6.2 shows the block diagram of the pmdc motor under control of arma-
ture current. Figure 6.3 shows this block diagram redrawn. Figure 6.3 shows
that i cannot track id alone, but only id − iex. The current i will be considered
as well-regulated if it tracks id nicely; i will not track id nicely as long as iex
dominates.
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If Ki(s) has poles, then Kb/Ki(s) will contain zeros. Zeros represent derivative
elements. Especially during transients in ω, these zeros will differentiate ω
with respect to time, leading to a large value of iex, and consequently to large
errors between id and i. Also, these zeros amplify sensor noise. Therefore,
we prefer a 1/Ki(s) that does not have zeros. However, if we do not have a
choice, then we need to use a filter on isens, which is the sensed version of i.
This filter is meant to remove any noise, which the capacitor that is in parallel
with Rs, may not have blocked. In our trials we found that the software filter
in main-prog.c

IF = (1-5.0*T)*IF + 5.0*T*Is; // Low-pass filter.

seems to be rejecting this noise adequately.

An easy way to ensure that i tracks id is to use for Ki(s) a proportional con-
troller with a large gain. The problem with the proportional controller is that
it provides a high gain in the transient as well as steady state phases of the
signals. This means that when the error between id and i is large, the demand
on u is large, and may exceed the 9− 10 V that our H-bridge provides.

Another choice for Ki(s) is a PI controller. The virtue of a PI controller is that, in
the transient phase of the signals, as the frequencies are high, it offers a small
gain, and therefore a small u. In the steady-state phase of the signals, as the
frequencies are small, it provides a high gain to nullify the error between id
and i.

The drawback of the PI controller is that, as 1/Ki(s) is a high-pass filter,
Kb/Ki(s) amplifies noise. However, the software filter shown above helps.
Remark 4. Note that, in the lab, we measure i using a resistor Rs placed in the ar-
mature path as shown in Figure 5.1. However, that location of Rs tells us that i is
non-negative, irrespective of the true sign of i. A scheme that gives the sign of i as well
as its magnitude is shown in Figure 6.4. As our present experiment is designed such
that i does not become negative, the scheme of Figure 5.1 is adequate for now.

6.4 To do at home

Q1 Using the voltage equation (5.1) and the fundamental torque equa-
tion (5.2), and T = Kti, determine the current at steady-state speed with

V = 9 V and TL = 0. Call this current id1. See the lecture slides.

The figure id1 is the maximum value that we wish to specify as reference
for the current control at TL = 0. Any greater value of reference current at
TL = 0 will require the H-bridge to apply a voltage V > 9 V, and thereby go
into voltage saturation. We wish to avoid saturation so that we may work
with an approximately linear plant.

Q2 Using the voltage equation (5.1) and the fundamental torque equa-
tion (5.2), and T = Kti, determine the current at steady-state speed with

V = 9 V and TL = 0.003 N ·m. Call this current id2. See the lecture slides.
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id +
Ki(s)

u + 1
sLa + RΣ

i
Kt

T +

TL

− 1
Js + B

ω

Kb

−−

Plant: The part outside dsPIC30F4012

Figure 6.2: Control of current in a pmdc motor. For the design of the controller
Ki(s) of current, use the values of RΣ, B that you determined in Question Q5 of
Section 5.4. Note that Ki(s) does not stand for an integral controller. Instead, it is
the controller of the armature current i.

id + +
Ki(s)

1
sLa + RΣ

i
Kt

T +

TL

− 1
Js + B

ω

Kb
Ki(s)iex

− −

Figure 6.3: The block diagram of Figure 6.2 redrawn. We can see that i tracks
id − iex, and not id alone. i is considered well-regulated if it tracks id nicely. This
nice tracking will not happen while iex dominates. Therefore, we choose Ki(s) to
supress iex. Two choices for Ki(s) are P and PI.

This value of TL = 0.003 N ·m has been arrived at as follows. The radius of
the pulley where the string winds is approximately r = 1.25 cm. The mass
of the load is in the range m = 1.5− 2 kg, but we assume that it is 1.5 kg.
Acceleration due to gravity g = 9.8 m/s2. The gear ratio is Rg = 62. We
have TL = mgr/Rg.

This id2 is the maximum value that we wish to specify as reference for the
current control at TL = 0.003 N ·m. Any greater value of reference current
at TL = 0.003 N ·m will require the H-bridge to apply a voltage V > 9
V, and thereby go into voltage saturation. We avoid saturation to have an
approximately linear plant. The minimum value of id2 is TL/Kt. When we
apply the load and require the motor to track a value of id that is less than
this minimum value of id2, the load will drive the motor, rather than the
motor driving the load.

Q3 Determine the TF from u to i for the PMDC motor in preparation for the
design of a PI controller.

Use the values of RΣ and B from the experiment where they were calcu-
lated from the experimentally-deterimined Km and τm (See Question Q5 of
Section 5.4).

As explained in Section 2.3, the armature inductance La is negligible.

Q4 Design a P or a PI controller for a settling time of 0.5 s.

Without using a semilog graph paper, we can still use our loop-shaping
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Vs
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Motor

IA

Vsens

S2S1
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Vref

−
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−

+

Figure 6.4: The correct placement of sensing resistor Rs to measure armature cur-
rent. IA is an instrumentation amplifier. This placement of Rs correctly gives the
sign of the armature current, unlike the placement of Rs in Figure 5.1. In that fig-
ure, irrespective of whether the armature current is flowing from right to left or
from left to right in the armature, the current through Rs is from top to bottom.
That is, that way of measuring the current shows the armature current as positive
always, irrespective of the actual direction of the current.

skills to build the controller through a little bit of reasoning combined with
simulation as follows.

Choice of KP At the first instant after the control system is deployed, the
error e(0) = id − i(0) is the largest (assuming a stable control system),
and, consequently, KPe is the largest at this instant. Therefore, KP may
be chosen, for example, as KP × e(0) < 9 V. For example, if id2 = 0.15
A, then KP < 9/0.15 = 60 V/A. Any value of KP > 60, will drive the
applied armature voltage into saturation at the initial instant of control.

Choice of KI Based on a quick sketch of the (KPs + KI)/s, we can see that
the larger the KI , the greater the speed of response of the control system.
So, KI may be chosen as large enough for the settling time to be about 0.5
s. A simulation using the m-file provided e5q4.m helps.

Answer the questions in e5q4.m for yourself. We may quiz you on them.

Q5 Provided to you is e5q5easysim.m, which is a modified version of
easysim.m. Verfiy for yourself that this file has been written correctly, and
simulate the CL system of Figure 6.2 for

1. id = id1, and

2. id = id2.
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Plot the i versus t and u versus t curves from parts 1 and 2.

Do the results of Q5 match those from Q4? Explain the differences.

6.5 To do in lab

Q7 Write the discretized version of the home-designed controller into
main-prog.c. In main-prog.c implement the part of the block diagram of
Figure 6.2 that is outside the plant. Either use î = isens, or î = 1

1.8 isens (such
as in Question Q6.3 of Section 5.4.2). The results we showed in the lecture
slides are using î = 1

1.8 isens− 1
1000 , though our later tests seemed to be giving

better results with the PI controller using î = isens.

Q8 Under the feedback control of Figure 6.2, take the readings of u and i for

Q8.1 id = id1 without any load on the motor. Immediately after the motor
shaft seems to be rotating at constant speed, hold the shaft tightly for
about a second and release.

Q8.2 id = id2 with the load provided by us tied to the pulley. Immediately
after the motor shaft seems to be rotating at constant speed, hold the shaft
tightly for about a second and release.

Q9 Take plots in both cases. Each plot will show i before and after application
of disturbance. With what error does i track the id in the two cases?

Q10 Are you satisfied with the disturbance rejection? Explain.

Q11 Write down the part of the C code that you wrote for this experiment.

You will use this code in the experiment on disturbance observer.

6.6 What to check if things do not work

If you seem to have done everything correctly, and yet your control system is
not working the way it should, here are some points you can check.

1. Is the electrolytic capacitor connected with correct polarity, as shown in Fig-
ure 5.3?

Thanks 2. We thank Prof. Shyama Prasad Das for helping us formulate questions Q3
and Q4.
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Chapter 7

Experiment 6: Disturbance
observer

7.1 Goal

To implement a disturbance observer (DOB) for a PMDC motor.

7.2 Background

7.2.1 Application of DOB

A conventional forward path controller such as P, PI, PID, lead, lag, etc, which
is a single degree of freedom controller (see Figure 7.1 (a)), can reject disturbances
as well as provide good performance if designed and tuned properly. The
design and tuning becomes much easier with a so-called two-degree of freedom
(2DOF) controller (Figure 7.1 (b)). There are two parts to this controller, each of
which can be designed and tuned independent of the other.

7.2.2 Model of pmdc motor with well-regulated current

For the case where the developed torque T is proportional to a current i as
T = Kti, and where this current is well-regulated at the desired value id, as
done in Figure 6.2, the motor-gear unit can be represented as in Figure 7.2.

For example, NASA’s Mars rovers used brushed dc motors (same as PMDC
motors) as their driving and steering motors [15]. For these motors, i is the
armature current. Brushless dc (BLDC) motors are also an alternative, for ex-
ample, in the Lunar Rover that ISRO has built in-house and that IITK has also
built. For BLDC motors i is the average dc link current [16, page 769].
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Figure 7.1: A single degree-of-freedom controller, (a), and a 2DOF controller, (b).
Ca(s) provides one degree of freedom while Cb(s) provides the other. In the control
system of (b) Cb(s) helps reject TL, while Ca(s) helps track ωd.

Kt
id T +

TL

−
1

Js+B
ω

Figure 7.2: Representation of a motor unit with i well regulated at id.

7.2.3 DOB for a pmdc motor with well-regulated current

TL can be estimated through either the OL scheme or the CL scheme of Fig-
ure 7.3. By working out the transfer functions from TL to T̂L in these two
schemes, we can see that, in the CL scheme, T̂L remains close to TL even with
variations in B, J, and Kt if τ is chosen to be sufficiently small.

Figure 7.4 shows the full block diagram of the PMDC motor with the DOB.

7.3 Questions

7.3.1 To do at home

1. Comparison of the DOBs of Figure 7.3.

1.1. Form the TF from TL to T̂L in each of the block diagrams of Figure 7.3.

1.2. Evaluate the two TFs when τ is small. What is the value of τ?

1.3. In which scheme is T̂L closer to TL when of Ĵ, B̂, K̂t are poor estimates?

2. Run the SIMULINK file named dob.mdl and describe briefly the effect of
each of the following changes.

2.1. Kω(s) being the controller you designed in Experiment 1 as opposed to
the lag controller shown in dob.mdl.
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Figure 7.3: Open-loop DOB to estimate TL, (a), and closed-loop DOB to estimate
TL, (b), [17]. n is sensor noise. Ĵ, B̂, K̂t are the estimates of J, B, Kt respectively. In
our experiment, we use the values of Ĵ, K̂t taken from Table 1.1, and the value of B̂
that is calculated from the unit step response of the OL motor as in Question Q5
of Section 5.4.

2.2. Injecting îL with a − instead of +.

2.3. Breaking the injection of îL.

2.4. Varying τ.

2.5. Varying the plant parameters (J, B, Kt) with the respective estimates
( Ĵ, B̂, K̂t) kept constant at their initial values.

3. Become acquainted with the files main-prog-exp6.c and easyplot.m.

4. Verify if the controllers that appear in dob.mdl have been discretized cor-
rectly in main-prog-exp6.c.

7.3.2 To do in lab

5. Take an OL step response of your motor, and calculate RΣ and B. You can
use the latter for B̂. You can use Ĵ = 1.34× 10−6 kg m2.

6. If necessary, modify the values of B and J, and the relation between î and i f
in main-prog-exp6.c.

7. Run your setup and take readings on both sides of the instant when the load
steps up in the following cases.

7.1. With îL fed back. Plot ω and T̂L versus t
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7.2. With îL fed back. Plot ω and u versus t.

7.3. Without îL fed back. Plot ω and T̂L versus t

7.4. Without îL fed back. Plot ω and u versus t.

The m-file easyplot.m organizes these plots as demonstrated in the lecture.
You only need to know how to use it. Make a few trial runs to obtain best
possible plots.

8. How did you expect your DOB to work? How did it actually work?

7.4 Programs provided

You are provided with the following files:

1. dob.mdl: This SIMULINK file simulates the full block diagram of Figure 7.4.

2. main-prog-exp6.c: This file implements the block diagram in C code. This
file implements the block diagram of Figure 7.5.

3. easyplot.m: This m-file helps plot the results read into the PC into
terminal.log by terminal.exe from the µC.
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Chapter 8

Experiment 7: Disturbance
observer without feedback of
current

8.1 Goal

To build and test a pmdc motor speed control system that uses a disturbance
observer (DOB) but does not use the feedback of armature current.

8.2 Background

In Experiment 6, we design a DOB using the feedback of armature current i. In
the present experiment, we build a slightly modified version of that DOB that
does not use the feedback of i.

Figure 8.1 (b) shows the block diagram of Figure 7.4 simplified. Figure 7.4 is
reproduced for convenience as Figure 8.1 (a). The advantage of the simplified
block diagram is that it does not need the measurement of current if we have
the measurement of speed. The disadvantage is that we do not have T̂L. In
applications where we need T̂L, we need to implement the scheme of Figure 8.1
(a), and not the simplified one.

From the SIMULINK model, that we we see that if we replace 1
τs+1 with 1 in the

path from i to y1, then there is no visible change in the behavior of the overall
system. Thus, after performing this replacement, the overall block diagram can
be redrawn as in Figure 7.4 (b).

In our lab, we will implement the scheme of Figure 7.4 (b). One reason for
this is that scheme (a) needs us to have measurement of current i. This quan-
tity, in our experiments, is of the order of a few tens of milliamps and contains
significant amount of noise. In the dual-motor ball-beam setup that we built
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in the Networked Control Systems Lab, we used a capacitor across the sens-
ing resistor to remove this noise, and an instrumentation amplifier to boost the
resultant signal. In the Control Systems Lab, however, we have not yet imple-
mented this filter-amplifier combination. So, measurements of current are not
yet accurate enough for feedback.

8.3 Questions

8.3.1 To do at home

1. Play with the SIMULINK file named dobgm.mdl to acquaint yourselves with
the two-degree of freedom control system with the DOB. Some items of in-
terest are

1.1. What is the effect of Kω(s) being a PI controller as opposed to a lag
controller?

1.2. What is the effect of KI(s) being a PI controller as opposed to a propor-
tional controller?

1.3. What is the effect of injecting îL with a − instead of +?

1.4. What is the effect of break the injection of îL?

1.5. What is the effect of varying τ?

1.6. What is the effect of varying the plant parameters (J, B, R, Kt) with the
respective estimates ( Ĵ, B̂, K̂t) kept constant at their initial values?

2. Write the equations that describe the overall closed-loop system of Fig-
ure 7.4 (b).

3. Discretize these equations.

4. Check if your discretized equations match what we gave you in the attached
m-file expt6.m.

5. If everything matches, then run the expt6.m in GNU Octave.

6. Write the C code of the controllers that you will implement in the lab.

8.3.2 To do in lab

7. Take an OL step response of your motor, and calculate RΣ and B. You can
use the latter for B̂. You can use Ĵ = 1.34× 10−6 kg m2.

8. Modify the values in the C code from Question 6, if necessary.

9. Write your C code into the appropriate place in the main-prog.c

10. Run your setup and take readings on both sides of the instant when the
load steps up. Provide the following two plots as subplots one below the
other: u versus t, and ω versus t.
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11. How did you expect your DOB to work? How did it actually work?

8.4 M-files

%% expt6.m
clc; clear all; close all;
format long

T = 0.002; tend = 2; t = 0:T:tend;
La = 0.00077; % in H
Jm = 13.0e-7; % in kg m^2
Jg = 0.4e-7; % in kg m^2
Kt = 0.0255; % in Nm/A
Kb = 0.0255; % in V/(rad/sec)
J = Jm+Jg;

%% practical values from step response
B = 5.41e-6;
Ra = 31;

%% Simulation
Ci = 100; % inner controller (current controller)

% let speed controller Cw = (a1*s+a2)/(s+a3)
b0 = 0.001157; b1 = 0.0222; a1 = 0.02218;
Wr(1:tend/T+1) = 100;
wf = 100; %% filter frequency in rad/sec

% TL = 0.00316; % for 2 Kg 0.01*9.8*2/62
tTL = 1; % time when the TL is applied
TL(1: tTL/T) = 0;
TL(tTL/T+1:tend/T+1) = 0.00316;

% Initialization
W = 0; xw = 0; xid = 0; xir = 0;
for k = 1:tend/T+1
% Speed controller
ew(k) = Wr(k) -W(k); % speed error
Iref(k) = (b1-b0*a1)*xir(k) + b0*ew(k);
xir(k+1) = (1-a1*T)*xir(k) + T*ew(k);

% estimation of Ihat = Im-IL
Ihat(k) = (B*wf/Kt - J*wf^2/Kt)*xw(k) + J*wf/Kt*W(k);
xw(k+1) = (1-T*wf)*xw(k) + T*W(k);

% Inner controller (Current controller)
u(k) = Ci*(Iref(k) - Ihat(k));
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% motor speed calculation
W(k+1) = ( 1 - B*T/J - Kt^2*T/Ra/J )*W(k) + Kt*T/J/Ra*u(k) -T/J*TL(k);
end

%% plot the response
subplot(3,1,1), plot(t, TL); grid;
title(’T_L [in Nm]’);
subplot(3,1,2), plot(t, u); grid;
title(’Controller output voltage [in V]’);
subplot(3,1,3), plot(t,Wr, t,W(1:tend/T+1)), grid;
title(’Speed \omega [in rad/sec]’); legend(’\omega_r’, ’\omega’)
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Chapter 9

Experiment 8: PMDC motor
modeling, identification,
position control

9.1 Goals

Modeling and identification (using OL step response) of PM DC motor. Design
using root locus and implementation of position controller for both. Compari-
son of results.

9.2 Introduction

In this experiment we will study the theoretical and practical aspects of the
control of the angular displacement of the shaft of a PM DC motor using a
microcontroller. The block diagram of the setup is as shown in Figure 1.1. A
dsPIC30F4012 micro-controller is used as the platform on which to implement
our digital controller, and H-bridge four-quadrant DC chopper is used to drive
the DC servo motor. Please see the first two chapters of this manual for the
details of the hardware and the software platform. Follows a list of questions
for this experiment.

9.3 Mathematical model of DC servo motor

Since the inductance La is very small, we may neglect La. Then the TF between
the motor shaft position θ(s) and the armature voltage V(s) is

θ(s)
V(s)

=
Km

s(τms + 1)
(9.1)
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where, Km is the motor gain constant and τm is the motor time constant. These
are as in Equation (2.1).

The parameters of the motor, gear, and encoder are provided in Table 1.1.

9.4 Dead zone in the Vm versus u characteristic

The dead zone in the Vm versus u charaacteristic of Figure 1.7 did not affect
much in the control of the speed of the DC motor as the speed was needed to
be at a large value and u quickly becomes large.

In the case of control of position of the shaft of the shaft of the DC motor, how-
ever, u may become small when the desired position is reached. If u becomes
smaller than 2 volts when Vs = 12 V, then Vm will be zero, and the position
control system will become unresponsive. To overcome this situation we have
two alternatives:

1. Use an integral component in the controller.

2. Add the following code in main-prog.c before or after the if condition used
for limiting the duty ratio.

if(u<0&&u>-2)
u = u - 2;

else if(u>0&&u<2)
u = u + 2;

9.5 Questions

9.5.1 To do at home

Q1 Determine the physics-based mathematical model of the DC servo motor
whose parameters may be found in the attached data sheets.

Q2 Design using root locus techniques a controller of at least first order and
at most second order to control the angular displacement of the shaft of the
given motor for the following time domain specifications: ess ≤ 2%, ts = 0.5
s, Mp ≤ 20%.

For root locus-based design, please see the class notes from EE250_Fall2010.

Q3 Simulate the continuous-time controller designed above using Matlab.

If the closed-loop system performance in simulation is not as desired, you
may need to redesign your controller.

Q4 Discretize the continuous-time controller.

Q5 With the discretized version, perform a simulation of digital control of the
continuous-time plant using the m-file provided in Experiment 1.
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Do you think that your digitally-controlled closed-loop system will be stable
in practice? Will it provide in practice the same performance as did the
continous-time version in simulation?

Q6 Write the digital controller in C.

9.5.2 To do in lab

Q7 Write a code to give a step input to the given motor. Run the setup in OL
mode.

Q8 Identify the system parameters Km and τm by using the OL step response.

Q9 For the identified model, redesign your controller using root locus in MAT-
LAB.

Q10 With the discretized version of the above-redesigned controller, perform
a simulation of digital control of the continuous-time plant using the m-file
provided in Experiment 1.

Q10 Program the home-designed digital controller and run the setup. Record
and plot the necessary data.

Q11 Program the lab-designed digital controller and run the setup.

Q12 Compare the following results:

1. those using the controller designed for the physics-based model and ob-
tained on Matlab,

2. those using the controller designed for the physics-based model and ob-
tained from the experimental setup,

3. those using the controller designed for the identified model and obtained
on Matlab,

4. those using the controller designed for identified model and obtained
from the experimental setup.

Q13 Conclusions:

1. Is the physics-based model a good match to the plant? If not, what do
you think we have ignored that has lead to the difference?

2. What are the skills you learned from this experiment?
3. Would you have preferred to learn a different skill set from the control

lab? If yes, which skills?
4. How could we have organized this experiment differently to make it

more meaningful to you?
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Chapter 10

Experiment 9: Encoderless
speed control of PMDC motor
using compensation of plant
nonlinearity

This experiment is modification of Experiment 4, and is based on [2].

10.1 Questions

10.1.1 To do at home

Q1 Using the values of Km and τm determined from the OL step response in
Experiment 1, determine the values of B and RΣ from the equations

Km =
KT

RΣB + KTKb
, τm =

RΣ J
RΣB + KTKb

.

Use the values of J, KT , Kb from Table 1.1. Do not use the value of B calcu-
lated in Section 1.6.

TIP: Write a small (4 – 6 lines) GNU Octave code for doing this calcula-
tion as you may be required to do the calculation once again in the lab.
Bring the Octave code to the lab

Q2 Write down the controller that you designed in Experiment 1.

Q3 Provided for this pre-lab assignment is a C-file main-prog-exp9.c. Exam-
ine this code and answer the following questions:
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ud + PI con-
troller

1
VS

u
PWM

δ H-bridge – motor
combination

Π ω

R
isens+V̂r

−

Kb
+

Figure 10.1: A control system that helps automatically measure the input-ouput
characteristic of the H-bridge.

ωd +
CON

uc
COMP

1
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u
PWM

δ H-bridge – motor
combo

Π ω

+
R

isens−1
Kb

ω̂

−

Figure 10.2: The encoderless speed control system with compensation of H-bridge
nonlinearity.

Q3.1 Write down the transfer function, with numerical values, of the PI con-
troller used in Figure 10.1. (Note: R = RΣ in the figures in this assign-
ment)

Q3.2 When you modify this C-file to use on your setup, which values in the
block diagram will you modify in the C-file?

Q3.3 Values of which variables in the block diagram are sent to the PC by
this C-file?

Q4 Provided for this pre-lab assignment is an m-file readplot_exp9.m and a
.log file name exp9saurav.log. Run the m-file on the .log file and answer
the following questions.

Q4.1 Write down the equation that you would use in the Figure 10.2 as the
compensator. (NOTE: You will obtain your own compensator in the lab)

Q4.2 Write the C-code implementation of the part of the block diagram that
is in the dashed box.

Q4.3 Where will this C-code go — into main-prog-exp9.c or main-prog.c?

Q4.4 For how many seconds was main-prog-exp9.c run to generate the
data in exp9saurav.log?

10.1.2 To do in lab

Verify that in your experimental setup the lead from the sensing resistor Rs
is connected to CN4 input pin 1 as shown in Figure 5.3, in addition to the
usual connections for speed control.
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Uncomment the following parts of main-prog.c
// IV = AD_value(); // Read voltage across Rs=4.7ohm.
// IV = 5*(511 + IV)/1022; // Convert signed to unsigned.

and
// Is = IV/4.7; // Convert voltage to current.
// IF = (1-5.0*T)*IF + 5.0*T*Is; // Low-pass filter.

There are other parts of main-prog.c that you will uncomment at your
discretion.

Q5 Write a code to apply a step input to the motor. Run the setup in OL mode.
Identify the system parameters Km and τm by using the OL step response.
[∼ 10 min]

Q6 If Km and τm are different from those you saw in Experiment 1, calculate
the values of RΣ and B as you did in Q1. Use the Matlab code of Q1 for this
calculation. [∼ 5 min]

Q7 Use the controller from Experiment 1. Control the motor using feedback of
speed. Sketch ω versus t and u vs. t in the table provided. Use ωref = 100
rad/s in Q7, Q9, Q12. [∼ 10 min]

Q8 Use the controller from Experiment 1. Control the motor using feedback
of current with ω̂ = u−RΣi

Kb
. Sketch ω vs. t, ω̂ vs. t, and u vs. t in the table

provided. [∼ 15 min]

Q9 Answer the following questions: [∼ 10 min]

Q9.1 Why are the steady state values of ω in Q7 and in Q8 not the same?

Q9.2 Why are the steady state values of ω and ω̂ not equal in Q8?

Q10 Burn the C-file main-prog-exp9.c into the µC. Take care to modify the
value of R. This file implements the block diagram of Figure 10.1 and returns
the data for ud and u. Record this data into a log file using terminal.exe.
[∼ 10 min]

Q11 Use the m-file readplot_exp9.m to process the data given out by
main-prog-exp9.c. [∼ 10 min]

Q11.1 Write down the polynomial generated by the m-file.

Q11.2 Sketch the compensator generated by this m-file in the below space.

Q12 Insert the compensator polynomial at the appropriate place in
main-prog.c and repeat Q8. That is, Figure 10.2 needs to be constructed.
Sketch ω vs. t, ω̂ vs. t, and uc vs. t in the table provided. [∼ 20 min]

Q13 Do you think that the polynomial given out by readplot_exp9.m is a
good compensator for the nonlinearities introduced by the H-bridge? [∼ 1
min]
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Q Var Plot

Q7 ω

Q7 u

Q Var Plot

Q8 ω

Q8 ω̂

Q8 u

Q Var Plot

Q12 ω

Q12 ω̂

Q12 u
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Software used

The Controls Lab has the following software on Microsoft Windows XP.

MPLAB IDE and MPLAB30 C compiler

The specific programs that are used in our lab are

MPLAB_IDE_8_86.zip
mplabc30_v3_30c_windows.exe

MPLAB_IDE_8_86.zip can be downloaded from

http://ww1.microchip.com/downloads/en/DeviceDoc/
MPLAB_IDE_8_86.zip

MPLAB C30 compiler can be found by searching on www.microchip.com for
“mplab c30”, without the quotes. Exists “MPLAB C Compiler for Academic
Use” that is used in this lab. It can be downloaded from here:

http://www.microchip.com/stellent/
idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656

Microchip also has MPLAB_IDE_8_87.zip on their site. This 8.87 version may
work too. It can be downloaded from

http://www.microchip.com/stellent/
idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=
en019469&part=SW007002

Occassionally, when burning to the dsPIC from MPLAB IDE fails, we use
PICKIT 2 software, which came packaged as PICkit 2 v2.61.00 Setup
A.zip on PICkit 2 programmer’s CD.

Terminal.exe

The version of Bray’s terminal.exe used in the lab is version 1.9b 20040204.
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GNU Octave

We have been using versions of GNU Octave >= 3.2.4. GNU Octave can
be downloaded from the website named Octave-Forge that has the URL
http://octave.sourceforge.net/. On this page, there is the following link
to a Windows installer of GNU Octave

https://sourceforge.net/projects/octave/files/
Octave%20Windows%20binaries/

with installation instructions that are easy to implement.
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