
1

Towers of Hanoi
• Three pegs, one with n disks of

decreasing diameter; two other pegs are
empty

• Task: move all disks to the third peg
under the following constraints
– Can move only the topmost disk from one peg

to another in one step
– Cannot place a smaller disk below a larger

one
• An example where recursion is much

easier to formulate than a loop-based
solution

2

Towers of Hanoi
• We want to write a recursive method

shift (n, source, target, using) which
moves n disks from peg ‘source’ to
‘target’ with the help of peg ‘using’ for
intermediate transfers

• The first step is to formulate the
algorithm
– Observation: shift (n, source, target, using)
Ξ shift (n-1, source, using, target) followed
by transferring the largest disk from peg
‘source’ to peg ‘target’ and then calling shift
(n-1, using, target, source)

– Stopping condition: n = 1

3

Tower of Hanoi

class hanoi{

static int counter = 0;

public static void shift(int n, char source, char
target, char using){
counter = counter + 1;

if (n==1) System.out.println(source+" -> "+target);
else if (n > 1) {

shift(n-1,source,using,target);
System.out.println(source+" -> "+target);
shift(n-1,using,target,source);

}
} // How many moves needed? 2n-1

4

Tower of Hanoi

public static void main (String args[])
{

int n = 3;
shift(n,'a','c','b');

System.out.println(counter);

}
}

5

Towers of Hanoi
• Total number of method calls

Let Tn be the number of method calls to solve
for n disks

Tn = 2Tn-1 + 1 for n > 1; T1 = 1

	Towers of Hanoi
	Towers of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Towers of Hanoi

