ESC101 : Fundamental of computing

Topics covered : Recursion

1. Explain in complete details the execution of the following program.
```
class recursion_example
{ public static void Strange(int n, String S)
    {
        if(n==0) System.out.println(''[#''+S+'']'');
        else
        { Strange(n-1,S+'','''n);
            if(n>1) Strange(n-2,S+'',''+(n-2));
        }
    }
    public static void main(String args[])
    {
        Strange(4,','');
    }
}
```

Answer :

```
[#,4,3,2,1]
[#,4,3,0]
[#,4,1,1]
[#,2,2,1]
[#,2,0]
```

2. Given a non-negative integer $n, \operatorname{Partition}(n)$ is the set of all the permutations of positive integers which sum upto n. For example, Partition $(3)=\{[3],[2,1],[1,2],[1,1,1]\}$. We want to write a program to print all elements of the set $\operatorname{Partition}(n)$ for a positive integer n, where for each element, we print the corresponding string. For example, the element $[2,1]$ can be expressed as string "[-2-1-]". For sake of simpler formulation, we extend $\operatorname{Partition}(n)$ to $\operatorname{PartitionS}(n, S)$ where S is a string as follows.
PartitionS (n, S) is the set of strings of the form $S+P$ where P is a string corresponding to partition of n. It is easy to observe that Partition $(n)=\operatorname{PartitionS}(\mathrm{n}, " ")$
Interact with the class closely to come up with the following recursive formulation of $\operatorname{PartitionS}(n, S)$.

$$
\operatorname{PartitionS}(n, S)= \begin{cases}"["+\mathrm{S}+"-] " & \text { if } n=0 \\ \bigcup_{1 \leq i \leq n} \operatorname{PartitionS}(n-i, \mathrm{~S}+"-"+\mathrm{i}) & \text { if } n>0\end{cases}
$$

Based on the above formulation, write a recursive method for enumerating elements of set Partition (n) on the monitor.

