

PARAM Sanganak

User’s Manual

Ver. 1.1.1

Last updated: March 09, 2021

www.cdac.in

 Page | 1

Copyright Notice

Copyright © 2020 Centre for Development of Advanced Computing

All Rights Reserved.

Any technical documentation that is made available by C-DAC (Centre for Development of Advanced

Computing) is the copyrighted work of C-DAC and is owned by C-DAC. This technical documentation is being

delivered to you as is, and C-DAC makes no warranty as to its accuracy or use. Any use of the technical

documentation or the information contained therein is at the risk of the user. C-DAC reserves the right to

make changes without prior notice.

No part of this publication may be copied without the express written permission of C-DAC.

Trademarks

CDAC, CDAC logo, NSM logo are trademarks or registered trademarks.

Other brands and product names mentioned in this manual may be trademarks or registered trademarks of

their respective companies and are hereby acknowledged.

Intended Audience

This document is meant for PARAM Sanganak users.

Typographic Conventions

Symbol Meaning

Blue underlined text A hyperlink or link you can click to go to a related

section in this document or to a URL in your web

browser.

Bold The names of menus, menu items, headings, and

buttons.

Italics Variables or placeholders or special terms in the

document.

Console text
Console commands

Getting help

For technical assistance or license renewal, please send an email to sanganaksupport@iitk.ac.in .

mailto:sanganaksupport@iitk.ac.in

 Page | 2

Give us your feedback

We value your feedback. Kindly send your comments on content of this document to

sanganaksupport@iitk.ac.in . Please include the page number of the document along with your feedback.

DISCLAIMER

The information contained in this document is subject to change without notice. C-DAC shall not be liable for

errors contained herein or for incidental or consequential damages in connection with the performance or use

of this manual.

mailto:sanganaksupport@iitk.ac.in

 Page | 3

Table of Contents

Introduction ... 6

System Architecture and Configuration.. 7

System Hardware Specifications .. 7

Master Nodes: 2 ... 7

Login Nodes: 8 .. 7

Service/Management Nodes: 10 .. 8

CPU Compute Nodes: 214 .. 8

GPU Compute Nodes: 20 .. 9

Operating System ... 9

Primary Interconnection Network ... 11

Secondary Interconnection Network ... 11

Software Stack .. 11

First Things First ... 13

First login .. 13

Forgot Password? ... 13

System Access .. 14

Remote Access ... 14

Transferring files between local machine and HPC cluster.. 15

Tools ... 17

Running Interactive Jobs .. 19

Managing Jobs through its Lifecycle ... 20

List Partition ... 20

Addressing Basic Security Concerns ... 25

More about Batch Jobs (SLURM) .. 26

Parameters used in SLURM job Script .. 26

I am familiar with PBS/ TORQUE. How do I migrate to SLURM? 29

Preparing your own Executable ... 30

Job Scheduling on PARAM Sanganak.. 34

Scheduler .. 34

 Page | 4

sinfo .. 34

Walltime ... 35

Scheduling Type .. 35

Debugging Your Codes ... 38

Introduction .. 38

Basics How Tos ... 38

Conclusions ... 57

Points to Note ... 57

Overall Coding Modifications Done ... 58

Machine Learning / Deep Learning Application Development 59

How to Install your own Software? .. 60

Some Important Facts .. 62

About File Size .. 62

Little-Endian and Big-Endian issues? .. 63

Best Practices for HPC .. 64

Installed Applications/Libraries ... 65

Standard Application Programs on PARAM Sanganak ... 65

LAMMPS Applications .. 65

OpenFOAM ... 68

WRF Application ... 69

NAMD Application .. 71

Acknowledging the National Supercomputing Mission in Publications 75

Getting Help – PARAM Sanganak Support .. 76

References ... 80

 Page | 5

List of Figures

Figure 1 -PARAM Sanganak Architecture Diagram ... 10

Figure 2 – Software Stack .. 12

Figure 3 - A snapshot of command using MobaXterm .. 17

Figure 4 - A snapshot of "scp" command using Windows command prompt. 17

Figure 5 - A snapshot of "scp” command using Windows PowerShell. .. 18

Figure 6 - A snapshot of "scp" tool to transfer file to and from remote computer. 18

Figure 7 – Output of sinfo command .. 21

Figure 8 – snapshot depicting the usage of “Job Array” ... 22

Figure 9 – View of available partition and node information on the cluster .. 34

Figure 10 - Listing the shares of association to a cluster. ... 36

Figure 11 – snapshot of debugging process .. 41

Figure 12 – Snapshot of debugging process ... 42

Figure 13- output at a debugging stage .. 43

Figure 14 – Snapshot of debugging process ... 43

Figure 15 – Output depicting “Arithmetic Exception” .. 44

Figure 16 – Snapshot of debugging process ... 44

Figure 17 – Well, we dumped core !!.. 44

Figure 18 - Snapshot of debugging process ... 45

Figure 19 – setting breakpoint .. 46

Figure 20 – single stepping through to catch error !! ... 47

Figure 21 – Debugging continued ... 48

Figure 22 – Debugging continued ... 48

Figure 23 – Setting a watch point ... 49

Figure 24 – Debugging continued ... 50

Figure 25 – Well, Back to square one !! .. 51

Figure 26 – Again Dumping Core!! Things are getting interesting or frustrating or both !! 51

Figure 27 – Debugging continued ... 52

Figure 28 – Debugging continued ... 52

Figure 29 – Debugging continued (Will it ever end?) ... 53

Figure 30 – We are almost there !! ... 53

Figure 31 – Debugging continued ... 54

Figure 32 – At last a clue!!! ... 55

Figure 33 - Correction applied !! .. 56

Figure 34 – Resolved !!! .. 57

Figure 35 – What all we did to get things right! ... 58

Figure 36 – PARAM Sanganak Dashboard... 76

Figure 37 – FAQ ... 77

Figure 38 - Signing page. ... 77

Figure 39 – Raise a Ticket. ... 78

Figure 40 - Snapshot of ticket generation ... 79

 Page | 6

Introduction

This document is the user manual for the PARAM Sanganak Supercomputing facility at IIT

Kanpur. It covers a wide range of topics ranging from a detailed description of the hardware

infrastructure to the information required to utilize the supercomputer, such as information

about logging on to the supercomputer, submitting jobs, retrieving the results on to user’s

Laptop/ Desktop etc. In short, the manual describes all that one needs know to effectively

utilize PARAM Sanganak.

The supercomputer PARAM Sanganak is based on a heterogeneous and hybrid configuration

of Intel Xeon Cascade lake processors, and NVIDIA Tesla V100. The system was designed and

implemented by HPC Technologies team, Centre for Development of Advanced Computing

(C-DAC).

It consists of 2 Master nodes, 8 Login nodes, 10 Service/Management nodes and 312

(CPU+GPU) nodes with total peak computing capacity of 1.66 (CPU+GPU) PFLOPS

performance.

 Page | 7

System Architecture and

Configuration

System Hardware Specifications

PARAM Sanganak systems are based on Intel Xeon Platinum 8268, NVIDIA Tesla V100 with

total peak performance of 1.6 PFLOPS. The cluster consists of compute nodes connected

with Mellanox (HDR) InfiniBand interconnect network. The system uses the Lustre parallel

file system.

● Total number of nodes: 332 (20 + 312)

o Service nodes: 20**(Master+ Login+ Service+ Management Nodes)

o CPU only nodes: 150

o GPU ready nodes: 64

o GPU nodes: 20

o High Memory nodes:78

Master Nodes: 2

PARAM Sanganak is an aggregation of a large number of computers connected through

networks. The basic purpose of the master node is to manage and monitor each of the

constituent component of PARAM Sanganak from a system’s perspective. This involves

operations like monitoring the health of the components, the load on the components, the

utilization of various sub-components of the computers in PARAM Sanganak.

Master Nodes: 2

2* Intel Xeon G-6248
Cores =40, 2.5 GHz

Total Cores = 80 cores

Memory= 384 GB Total Memory = 768 GB

HDD = 1 TBx8

Login Nodes: 8

Login nodes are typically used for administrative tasks such as editing, writing scripts,

transferring files, managing your jobs and the like. You will always get connected to one of

the login nodes. From the login nodes you can get connected to a compute node and

 Page | 8

execute and interactive job or submit batch jobs through the batch system (SLURM) to run

your jobs on compute nodes. For ALL users PARAM Sanganak login nodes are the entry

points and hence are shared. By default, there will be a limit on the CPU time that can be

used on a login node by a user and there is a limit/user on the memory as well. If any of

these are exceeded, the job will get terminated.

Login Nodes: 8

2* Intel Xeon G-6248
Cores = 40, 2.5 GHz

Total Cores = 320 cores

Memory= 384 GB Total Memory = 3072 GB

HDD = 1 TBx8

Service/Management Nodes: 10

Typically, the purpose of the service node is to provide Job Scheduling Services and other

services to the cluster.

Service Nodes: 4

2* Intel Xeon G-6248
Cores = 40, 2.5 GHz

Total Cores = 160 cores

Memory= 384 GB Total Memory= 1536 GB

HDD = 1 TBx5

CPU Compute Nodes: 214

CPU nodes are indeed the work horses of PARAM Sanganak. All the CPU intensive activities

are carried on these nodes. Users can access these nodes from the login node to run

interactive or batch jobs. Some of the nodes have higher memory, which can be exploited

by users in the aforementioned way.

CPU only Compute Nodes: 150

2* Intel Xeon Platinum 8268
Cores = 48, 2.9 GHz

Total Cores = 7200 cores

Memory= 192 GB, DDR4 2933 MHz Total Memory=28800 GB

SSD = 480 GB (local scratch) per node

GPU ready Compute Nodes: 64

2* Intel Xeon Platinum 8268
Cores = 48, 2.9 GHz

Total Cores = 3072 cores

Memory= 192 GB, DDR4 2933 MHz Total Memory=12,288 GB

SSD = 480 GB (local scratch) per node

 Page | 9

High Memory nodes: 78

Some compute nodes may feature a particular specification to be used for a particular job,

or stage in your workflow.

These are High Memory nodes that provide users to run their memory intensive jobs.

CPU only Compute Nodes with High memory: 78

2* Intel Xeon Platinum 8268
Cores = 48, 2.9 GHz Total Cores = 3744 cores
Memory= 768 GB, DDR4 2933 MHz Total Memory=59904 GB

SSD = 480 GB (local scratch) per node

GPU Compute Nodes: 20

GPU compute nodes are the nodes that have CPU cores along with accelerators cards. For

some applications GPUs get markedly high performance. For exploiting these, one has to

make use of special libraries which map computations on the Graphical Processing Units

(Typically one has to make use of CUDA or OpenCL).

GPU Compute Nodes: 20

2* Intel Xeon G-6248
Cores = 40, 2.5 GHz

Total Cores = 800 cores

Memory= 192 GB, DDR4 2933 MHz Total Memory= 3840 GB

SSD = 480 GB (local scratch) per node

2*NVidia V100 per node
GPU Cores per node= 2*5120= 10240
GPU Memory = 16 GB HBM2 per NVidia V100

Storage

 Based on Lustre parallel file system

 Total useable capacity 2.2 PiB primary storage

 Throughput 50 GB/s

Operating System

 Operating system on PARAM Sanganak is Linux – CentOS 7.6

 Page | 10

 Figure 1 -PARAM Sanganak Architecture Diagram

Network infrastructure

A robust network infrastructure is essential to implement the basic functionalities of a

cluster. These functionalities are:

a) Management functionalities i.e., to monitor, troubleshoot, start, stop various
components of the cluster, etc. (Network/ portion of Network which implements
this functionality is referred to as Management fabric).

b) Ensuring fast read/ write access to the storage (Network/ portion of Network
which implements this functionality is referred to as storage fabric).

c) Ensuring fast I/O operations like connecting to other clusters, connecting the
cluster to various users on the campus LAN, etc. (Network/ portion of Network
which implements this functionality is referred to as I/O Fabric).

d) Ensuring High-Bandwidth, Low-latency communication amongst processors to for
achieving high-scalability (Network/ portion of Network which implements this
functionality is referred to as Message Passing Fabric)

 Page | 11

Technically, ALL the aforementioned functionalities can be implemented in a single network.

From the perspectives of requirements, optimal performance and economic suitability, the

aforementioned functionalities are implemented using two different networks based on

different technologies, as mentioned next:

Primary Interconnection Network

Computing nodes of PARAM Sanganak are interconnected by a high-bandwidth, low-latency

interconnection network.

InfiniBand: 100 Gbps

InfiniBand is a high-performance communication architecture owned by Mellanox. This

communication architecture offers low communication latency, low power consumption

and a high throughput. All CPU nodes and GPU nodes are connected via InfiniBand

interconnection network.

Secondary Interconnection Network

Gigabit Ethernet: 1 Gbps

Gigabit Ethernet is the interconnection network that is most commonly available. For

Gigabit Ethernet, no additional modules or libraries are required. The Open MPI, MPICH

implementations will work over Gigabit Ethernet.

Software Stack

Software stack is an aggregation of software components that work in tandem to

accomplish a given task. The task can be, to facilitate a user to execute his job/s or to

facilitate a system administrator to manage a system efficiently. In effect, the software will

have all the necessary components to accomplish a given task. There may be multiple

components of different flavors to accomplish a given sub-task. The user/ administrator may

mix and match these components depending on his choice. Typically, a user would be

interested in preparing his executables, executing the same with his data sets and visualize

the output generated by him. For accomplishing the same, the user would need to compile

his codes, link the codes with communication libraries, Math Libraries, Numerical algorithm

libraries, prepare the executables, run the same with desired data sets, monitor the

progress of his jobs, gathering the results and visualizing the output.

Typically, a system administrator would be interested in ensuring that all the resources are

optimally utilized. For accomplishing this, he may need some installation tools, tools for

checking the health of all the components, good schedulers, tools to facilitate allocation of

resources to users and monitor the usage of the resources.

 Page | 12

The software stack provided with this system has a gamut of software components which

meets all the requirements of a user and that of a system administrator. The components of

the software stack are depicted in figure 2.

Figure 2 – Software Stack

Functional Areas Components

Base OS CentOS 7.6

Architecture X86_64

Provisioning

Cluster Manager

xCAT 2.14.6

OpenHPC (ohpc-xCAT 1.3.8)

Monitoring Tools C-CHAKSHU, Nagios, Ganglia, XDMoD

Resource Manager SLURM

I/O Services Lustre Client

High Speed Interconnects Mellanox InfiniBand

Compiler Families GNU (gcc, g++, gfortran)

Intel Compiler (icc, ifort, icpc)

MPI Families MVAPICH, OpenMPI, MPICH

 Page | 13

First Things First

First login

Whenever the newly created user on PARAM Sanganak tries to login with the user Id and

password (temporary, system generated) provided over the Email through PARAM

Sanganak support, he/she will next be prompted to create a “new password” of their choice

which will change the temporary, system generated password. This will enable you to keep

your account secure. It is recommended that you have a strong password which contains

the combination of alphabets (lower case / upper case), numbers, and a few special

characters that you can easily remember.

Given next is a screenshot that describes the scenario for “first login”

Your password will be valid for 90 days. On expiry of 90 days period, you will be prompted
to change your password, on attempting to log in. You are required to provide a new
password.

Forgot Password?

There is nothing to panic!! Please raise a ticket regarding this issue and the system

administrators will resolve your problem. Please refer to the section “Getting Help – PARAM

Sanganak Support, described elsewhere in this manual. Follow the GUI based, user-friendly

ticketing system. Please follow the steps given below:

1. Open the PARAM Sanganak support site i.e. the ticketing tool by following the link
https://paramsanganak.iitk.ac.in/support

2. Login with your registered email id, Complete name, Contact number.

3. There you can raise a ticket to get the password reset.

https://paramsanganak.iitk.ac.in/support

 Page | 14

4. The system admin person will revert with an email for verification.

5. Once acknowledged, the password will be reset for the user and an email will be
sent back intimating same.

6. Then the user can login with the temporary password and can set a new password of
his/her choice.

System Access

Accessing the cluster

The cluster can be accessed through 4 general login nodes, which allows users to login.

 You may access login node through ssh.

 The login node is primary gateway to the rest of the cluster, which has a job
scheduler (called Slurm). You may submit jobs to the queue and they will run when
the required resources are available.

 Please do not run programs directly on login node. Login node is use to submit jobs,
transfer data and to compile source code. (If your compilation takes more than a few
minutes, you should submit the compilation job into the queue to be run on the
cluster.)

 By default, two directories are available (i.e. /home and /scratch). These directories
are available on login node as well as the other nodes on the cluster. /scratch is for
temporary data storage, generally used to store data required for running jobs.

Remote Access

Using SSH in Windows

To access PARAM Sanganak you need to “ssh” the login server. PuTTY is the most popular

open source “ssh” client application for Windows, you can Download it from

(http://www.putty.org/). Once installed, find the PuTTY application shortcut in your Start

Menu, desktop. On clicking the PuTTY icon The PuTTY Configuration dialog should appear.

Locate the “Host Name or IP Address” input Field in the PuTTY Configuration screen. Enter

the user name along with IP address or Hostname with which you wish to connect.

(e.g. [username]@paramsanganak.iitk.ac.in)

Enter your password when prompted, and press Enter.

Using SSH in Mac or Linux

Both Mac and Linux systems provide a built-in SSH client, so there is no need to install any

additional package. Open the terminal, connect to an SSH server by typing the following

command:

about:blank

 Page | 15

ssh [username]@[hostname]

For example, to connect to the PARAM Sanganak Login Node, with the username

user1: ssh user1@paramsanganak.iitk.ac.in

You will be prompted for a password, and then will be connected to the server.

Password

How to change the user password?

Use the passwd command to change the password for the user from login node.

Transferring files between local machine and HPC cluster

Users need to have the data and application related to their project/research work on

PARAM Sanganak.

To store the data special directories have been made available to the users with name

“scratch and home” the path to this directory is “/scratch” and “/home”. Whereas these

directories are common to all the users, a user will get his own directory with their

username in /scratch/ as well as /home/ directories where they can store their data.

/home/<username>/: ! This directory is generally used by the user to

install applications.

/scratch/<username>/: ! This directory is user to store the user data

related to the project/research.

However, there is limit to the storage provided to the users, the limits have been defined

according to quota over these directories, all users will be allotted same quota by default.

When a user wishes to transfer data from their local system (laptop/desktop) to HPC

system, they can use various methods and tools.

 Page | 16

A user using ‘Windows’ operating system will get methods and tools that are native to

Microsoft windows and tools that could be installed on your Microsoft windows machine.

Linux operating system users do not require any tool. They can just use “scp” command on

their terminal, as mentioned below.

Users are advised to keep a copy of their data with themselves, once the project/research

work is completed by transferring the data in from PARAM Sanganak to their local system

(laptop/desktop). The command shown below can be used for effecting file transfers (In all

the tools):

Scp –r <path to the local data directory> <your username>@<IP of

paramSanganak>:<path to directory on HPC where to save the data>

Example:

Same Command could be used to transfer data from HPC system to your local system

(laptop/desktop).

Scp –r /dir/dir/file saurabh@<cluster IP/Name>:/home/Saurabh

 Example:

Scp –r <path to directory on HPC> <your username>@<IP of local

system>:<path to the local data directory>

Scp –r /home/saurabh saurabh@<local system IP/Name>:/dir/dir/file

Note: The Local system (laptop/desktop) should be connected to the network with which it

can access the HPC system.

To reiterate,

Copying Directory/File from local machine to PARAM Sanganak:

To copy a local directory from your Linux system (say Wrf-2.0) to your home directory in

your PARAM Sanganak HPC account, the procedure is:

1. From terminal go to the parent directory using cd command.

user1@mylaptop:~$cd ~/MyData/

 Page | 17

2. Under parent directory type ls <& press Enter key>, & notice Wrf-2.0 is there.
user1@mylaptop: ~$ls Files TempFiles-0.5 Wrf-2.0

3. Begin copy by typing:

user1@mylaptop: ~$ scp -r Wrf-2.0 (username)@paramsanganak.iitk.ac.in

< you will be prompted for password; enter your password >

4. Now login to your account as: user1@mylaptop: ~$ ssh (your username) @
paramsanganak.iitk.ac.in < you will be prompted for password ; enter password >
[user1@login ~]$

5. ls command, you should see Wrf-2.0 directory.

6. While copying from PARAM Sanganak to your local machine, follow the same steps.

By interchanging source and destination in the scp command. Refer to the generic copying

described earlier.

Tools

MobaXterm (Windows installable application):

It is a third party freely available tool which can be used to access the HPC system and

transfer file to PARAM Sanganak system through your local systems (laptop/desktop).

Link to download this tool : https://mobaxterm.mobatek.net/download-home-edition.html

Figure 3 - A snapshot of command using MobaXterm

Command Prompt (Windows native application):

This is a native tool for Windows machine which can be used to transfer data from PARAM

Sanganak system through your local systems (laptop/desktop).

Figure 4 - A snapshot of "scp" command using Windows command prompt.

https://mobaxterm.mobatek.net/download-home-edition.html

 Page | 18

PowerShell (Windows native application):

This is a This is a native tool for Windows machine which could be used to transfer data

from PARAM Sanganak system through your local systems (laptop/desktop).

Figure 5 - A snapshot of "scp” command using Windows PowerShell.

WinSCP (Windows installable application):

This popular tool is freely available and is used very often to transfer data from Windows

machine to Linux machine. This tool is GUI based which makes it very user-friendly.

Link for this tool is : https://winscp.net/eng/download.php

Figure 6 - A snapshot of "scp" tool to transfer file to and from remote computer.

https://winscp.net/eng/download.php

 Page | 19

Running Interactive Jobs

In general, the jobs can be run in an interactive manner or in batch mode. You can run an

interactive job as follows:

The following command asks for a single core on one hour with default amount of memory.

$ srun --nodes=1 --ntasks-per-node=1 --time=01:00:00 --pty bash -i

The command prompt will appear as soon as the job starts. This is how it looks once the

interactive job starts:

srun: job xxxxx queued and waiting for resources srun: job xxxxx has been

allocated resources

Where xxxxx is the job id.

Exit the bash shell to end the job. If you exceed the time or memory limits the job will also

abort.

Please note that PARAM Sanganak is NOT meant for executing interactive jobs. However, for

the purpose of quickly ascertaining successful run of a job before submitting a large job in

batch (with large iteration counts), this can be used. This can even be used for running small

jobs. The point to be kept in mind is that, since others too would be using this node, it is

prudent not to inconvenience them by running large jobs.

It is a good idea to specify the CPU account name as well (if you face any problems)

$ srun --account=<NAME_OF_MY_ACCOUNT> --nodes=1 --ntasks-per-node=1 --

time=01:00:00 -- pty bash -i

 Page | 20

Managing Jobs through its

Lifecycle

PARAM Sanganak extensively uses modules. The purpose of module is to provide the

production environment for a given application, outside of the application itself. This also

specifies which version of the application is available for a given session. All applications and

libraries are made available through module files. A User has to load the appropriate

module from the available modules.

module avail # This command lists all the available modules

module load compiler/intel/2018.2.199 # This will load the intel compilers into your

environment

module unload compiler/intel/2018.2.199 # This will remove all environment setting

related to intel-2018 compiler loaded previously

A simple Slurm job script

#!/bin/sh

#SBATCH -N 16 // specifies number of nodes

#SBATCH --ntasks-per-node=40 // specifies core per node

#SBATCH --time=06:50:20 // specifies maximum duration of run

#SBATCH --job-name=lammps // specifies job name

#SBATCH --error=job.%J.err_node_40 // specifies error file name

#SBATCH --output=job.%J.out_node_40 //specifies output file name

#SBATCH --partition=standard // specifies queue name

#SBATCH --nodelist=cn[031,046] // nodelist specifies particular nodes

to be allocated

export I_MPI_FABRICS=shm:dapl

hostname

List Partition

sinfo displays information about nodes and partitions(queues).

$ sinfo

 Page | 21

Figure 7 – Output of sinfo command

Submit the job

We can consider three cases of submitting a job

1. Submitting a simple standalone job

This is a simple submit script which is to be submitted

$ sbatch slurm-job.sh

Submitted batch job 106

2. Submit a job that's dependent on a prerequisite job being completed

Consider a requirement of pre-processing a job before proceeding to actual processing.

Pre-processing is generally done on a single core. In this scenario, the actual processing

script is dependent on the outcome of pre-processing script.

here’s a simple job script. Note that the Slurm -J option is used to give the job a name.

#!/usr/bin/env bash

#SBATCH -p standard

#SBATCH -J simple

sleep 60

Submit the job: $ sbatch simple.sh
Submitted batch job 149

Now we'll submit another job that's dependent on the previous job. There are many

ways to specify the dependency conditions, but the "singleton" method is the simplest.

The Slurm -d singleton argument tells Slurm not to dispatch this job until all previous

jobs with the same name have completed.

$ sbatch -d singleton simple.sh //may be used for first pre-processing

on a core and then submitting

Submitted batch job 150

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 150 standard simple user1 PD 0:00 1 (Dependency)

 149 standard simple user1 R 0:17 1 atom01

Once the prerequisite job finishes the dependent job is dispatched.

https://www.brightcomputing.com/Blog/bid/172545/How-to-Submit-a-Simple-Slurm-GPU-job-to-your-Linux-cluster

 Page | 22

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 150 standard simple user1 R 0:31 1 atom01

3. Submit a job with a reservation allocated

Use the command given below to check the reservation name allocated to your user

account

$ scontrol show reserv

If your ‘user account’ is associated with any reservation the above command will show

you the same. For eg. The reservation name given is user_11. Use below command to

make use of this reservation

$ sbatch --reservation=user_11 simple.sh

4. Submitting multiple jobs with minor or no changes (array jobs)

A SLURM job array is a collection of jobs that differs from each other by only a single

index parameter.

Figure 8 – snapshot depicting the usage of “Job Array”

List jobs

Monitoring jobs on SLURM can be done using the command squeue. squeue is used to view

job and job step information for jobs managed by SLURM.

 $ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 106 standard slurm-jo user1 R 0:04 1 atom01

 Page | 23

Get job details

scontrol can be used to report more detailed information about nodes, partitions, jobs, job

steps, and configuration.

scontrol show node - shows detailed information about compute nodes.

scontrol show partition - shows detailed information about a specific partition

scontrol show job - shows detailed information about a specific job or all jobs if no job id is

given.

scontrol update job - change attributes of submitted job.

$ scontrol show job 106

JobId=106 Name=slurm-job.sh

 UserId=user1(1001) GroupId=user1(1001)

 Priority=4294901717 Account=(null) QOS=normal

 JobState=RUNNING Reason=None Dependency=(null)

 Requeue=1 Restarts=0 BatchFlag=1 ExitCode=0:0

 RunTime=00:00:07 TimeLimit=14-00:00:0 TimeMin=N/A

 SubmitTime=2013-01-26T12:55:02 EligibleTime=2013-01-26T12:55:02

 StartTime=2013-01-26T12:55:02 EndTime=Unknown

 PreemptTime=None SuspendTime=None SecsPreSuspend=0

 Partition=standard AllocNode:Sid=atom-head1:3526

 ReqNodeList=(null) ExcNodeList=(null)

 NodeList=atom01

 BatchHost=atom01

 NumNodes=1 NumCPUs=2 CPUs/Task=1 ReqS:C:T=*:*:*

 MinCPUsNode=1 MinMemoryNode=0 MinTmpDiskNode=0

 Features=(null) Gres=(null) Reservation=(null)

 Shared=0 Contiguous=0 Licenses=(null) Network=(null)

 Command=/home/user1/slurm/local/slurm-job.sh

 WorkDir=/home/user1/slurm/local

Suspend a job (root only):

scontrol suspend 135

squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 135 standard simple.s user1 S 0:10 1 atom01

Resume a job (root only):

scontrol resume 135

squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 135 standard simple.s user1 R 0:13 1 atom01

Kill a job. Users can kill their own jobs, root can kill any job.

 Page | 24

$ scancel 135

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

Hold a job:

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 139 standard simple user1 PD 0:00 1 (Dependency)

 138 standard simple user1 R 0:16 1 atom01

$ scontrol hold 139

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 139 standard simple user1 PD 0:00 1 (JobHeldUser)

 138 standard simple user1 R 0:32 1 atom01

Release a job:

$ scontrol release 139

$ squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 139 standard simple user1 PD 0:00 1 (Dependency)

 138 standard simple user1 R 0:46 1 atom01

 Page | 25

Addressing Basic Security Concerns

Your account on PARAM Sanganak is ‘private to you’. You are responsible for any actions

emanating from your account. It is suggested that you should never share the password to

anyone including your friends and system administrators!!

Please note that, by default, a new account created on PARAM Sanganak is readable by

everyone on the system. The following simple commands will make your account

adequately safe.

chmod 700 /home/$user ! will ensure that only yourself can read, write and

! execute files in your home directory

chmod 750 /home/$user ! will enable yourself and the members of your

! group to read and execute files in your home

! directory

chmod 755 /home/$user ! will enable yourself, your group members and

! everyone else to read and execute files in your

! directory

chmod 777 /home/$user ! will enable EVERY ONE on the system to read,

! write and execute files in your home directory.

! This is a sort of ‘free for all’ situation. This

! should be used very judiciously

 Page | 26

More about Batch Jobs (SLURM)

SLURM (Simple Linux Utility for Resource Management) is a workload manager that provides a

framework for job queues, allocation of compute nodes, and the start and execution of jobs.

It is important to note:

• Compilations are done on the login node. Only the execution is scheduled via SLURM
on the compute/GPU nodes

• Upon Submission of a Job script, each job gets a unique Job Id. This can be obtained
from the ‘squeue’ command.

• The Job Id is also appended to the output and error filenames.

Parameters used in SLURM job Script

The job flags are used with SBATCH command. The syntax for the SLURM directive in a

script is "#SBATCH <flag>". Some of the flags are used with the srun and salloc commands.

Resource Flag Syntax Description
partition --partition=partition name Partition is a queue for jobs.
time --time=01:00:00 Time limit for the job.
nodes --nodes=2 Number of compute nodes for the

job.
cpus/cores --ntasks-per-node=8 Corresponds to number of cores

on the compute node.
resource
feature

--gres=gpu:2 Request use of GPUs on compute
nodes

account --account=group-slurm-
account

Users may belong to groups or
accounts.

job name --job-name="lammps" Name of job.
output file --output=lammps.out Name of file for stdout.
email
address

--mail-
user=username@iitk.ac.in

User's email address

access --exclusive Exclusive access to compute
nodes.

Script for a Sequential Job

#!/bin/bash

#SBATCH -N 1 / number of nodes

#SBATCH --ntasks-per-node=1 / number of cores per node

#SBATCH --error=job.%J.err / name of output file

#SBATCH --output=job.%J.out / name of error file

#SBATCH --time=01:00:00 / time required to execute the program

 Page | 27

#SBATCH --partition=standard / Partition or queue name

// To load the module //

module load compiler/intel/2018.2.199

cd <Path of the executable>.

/home/cdac/a.out (Name of the executable).

Script for a Parallel OpenMP Job

#!/bin/bash

#SBATCH -N 1 / Number of nodes

#SBATCH --ntasks-per-node=24 / Number of core per node

#SBATCH --error=job.%J.err / Name of output file

#SBATCH --output=job.%J.out / Name of error file

#SBATCH --time=01:00:00 / Time take to execute the program

#SBATCH --partition=standard / Partition or queue name

/ To load the module /

module load intel/2018.0.1.163

cd < path of the executable>

Export OMP_NUM_THREADS=24 (Depending upon your requirement you can change

number of threads . Maximum no.of threads is =24)

/home/cdac/a.out (Name of the executable).

Script for Parallel Job – MPI (Message Passing Interface)

#!/bin/sh

#SBATCH -N 16 / Number of nodes

#SBATCH --ntasks-per-node=40 / Number of cores for node

#SBATCH --time=06:50:20 / Time required to execute the program

#SBATCH --job-name=lammps / Name of application

#SBATCH --error=job.%J.err_16_node_40 / Name of the output file

#SBATCH --output=job.%J.out_16_node_40 / Name of the error file

#SBATCH --partition=standard / Partition or queue name

// To load the module //

module load compiler/intel/2018.2.199

module unload gnu8/8.3.0

source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

// Below are the MPI Settings //

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:tmi // Fabrics required for with node inter node

//

 Page | 28

export I_MPI_DEBUG=9 // Level of debug //

cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench

// Command to run the lammps in Parallel //

time mpiexec.hydra -genv I_MPI_DEBUG 9 -n $SLURM_NTASKS -genv

OMP_NUM_THREADS 1 /home/manjuv/LAMMPS_2018COMPILER/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

Script for Hybrid Parallel Job – (MPI + OpenMP)

#!/bin/sh

#SBATCH -N 16 / Number of nodes

#SBATCH --ntasks-per-node=40 / Number of cores for node

#SBATCH --time=06:50:20 / Time required to execute the program

#SBATCH --job-name=lammps / Name of application

#SBATCH --error=job.%J.err_16_node_40 / Name of the output file

#SBATCH --output=job.%J.out_16_node_40 / Name of the error file

#SBATCH --partition=standard / Partition or queue name

// To load the module //

module load compiler/intel/2018.2.199

module unload gnu8/8.3.0

source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

// Below are the MPI Settings //

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:tmi // Fabrics required for with node inter node

//

export I_MPI_DEBUG=9 // Level of debug //

Export OMP_NUM_THREADS=20 (Depending upon your requirement you can change

number of threads . Maximum no.of threads is =40)

cd /home/manjuv/LAMMPS_2018COMPILER/lammps-22Aug18/bench

// Command to run the lammps in Parallel //

time mpiexec.hydra -genv I_MPI_DEBUG 9 -n $SLURM_NTASKS -genv

OMP_NUM_THREADS 20 /home/manjuv/LAMMPS_2018COMPILER/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

 Page | 29

I am familiar with PBS/ TORQUE. How do I migrate to

SLURM?

Environment Variables PBS/Torque SLURM

Job Id $PBS_JOBID $SLURM_JOBID

Submit Directory $PBS_JOBID $SLURM_SUBMIT_DIR

Node List $PBS_NODEFILE $SLURM_JOB_NODELIST

Job Specification PBS/Torque SLURM

Script directive #PBS #BATCH

Job Name -N [name] --job-name=[name] OR -J

[name]

Node Count -1 nodes=[count] --nodes=[min[-max]] OR -N

[min[-max]]

CPU count -1 ppn=[count] ---ntasks-per-node=[count]

CPUs Per Task --cpus-per-task=[count]

Memory Size -1 mem-[MB] --mem=[MB] OR –

mem_per_cpu=[MB]

Wall Clock Limit -1 walltime=[hh:mm:ss] --time=[min] OR –

mem_per_cpu=[MB]

Node Properties -1

nodes=4.ppn=8:[property]

--constraint=[list]

Standard Output File -o [file_name] --output=[file_name] OR -o

[file_name]

Standard Error File -e [file_name] --error=[file_name] OR -e

{file_name]

Combine stdout/stderr -j oe (both to stdout) (This is default if you do not

specify –error)

Job Arrays -t [array_spec] --array=[array_spec] OR -a

[array_spec]

Delay Job Start -a [time] --begin=[time]

 Page | 30

Preparing your own Executable

The compilations are done on the login node, whereas the execution happens on the

compute nodes via the scheduler (SLURM).

Note: The Compilation and execution must be done with same libraries and matching

version to avoid unexpected results.

Steps:

1. Load required modules on the login node.

2. Do the compilation.

3. Open the job submission script and specify the same modules to be loaded as used while
compilation.

4. Submit the script.

The directory contains a few sample programs and their sample job submission scripts. The

compilation and execution instructions are described in the beginning of the respective files.

The user can copy the directory to his/her home directory and further try compiling and

executing these sample codes. The command for copying is as follows:

cp -r /home/apps/cdac/samples/ ~/.

1. mm.c - Serial Version of Matrix-Matrix Multiplication of two NxN matrices

2. mm_omp.c - Basic OpenMP Version of Matrix-Matrix Multiplication of two NxN
matrices

3. mm_mpi.c - Basic MPI Version of Matrix-Matrix Multiplication of two NxN
matrices

4. mm_acc.c - OpenAcc Version of Matrix-Matrix Multiplication of two NxN
matrices

5. mm_blas.cu - CUDA Matrix Multiplication program using the CuBlas library.

6. mm_mkl.c - MKL Matrix Multiplication program.

7. laplace_acc.c - OpenACC version of the basic stencil problem.

It is recommended to use the intel compilers since they are better optimized for the

hardware.

 Page | 31

Compilers

Compilers Description Versions Available

gcc/gfortran GNU

Compiler

(C/Fortran)

4.8.5, 8.3.0

icc/ifort Intel

Compiler

(C/Fortran)

17.x, 18.x, 19x,20x

mpicc/mpif90 Intel-mpi

based GNU

compiler

(C/Fortran)

mpiicc/mpiifort Intel-mpi

based intel

compiler

(C/Fortran)

nvcc CUDA C

Compiler

7.0,8.0,9.0,9.2,10.0,10.1

pgcc/pgf90 PGI

Compiler

(C/Fortran)

21.2, 2021

Optimization Flags

Optimization flags are meant for uniprocessor optimization, wherein, the compiler tries to

optimize the program, on the basis of the level of optimization. The optimization flags can

be explored more on the respective compiler pages. A few examples are given below.

Intel: -O3 –xHost

GNU: -O3

PGI: -fast

Given next is a brief description of compilation and execution of the various types of

programs. However, for certain bigger applications, loading of additional dependency

libraries might be required.

C Program:

Setting up of environment: module compiler/intel/2018.2.199

compilation: icc -O3 -xHost <<prog_name.c>>

Execution: ./a.out

 Page | 32

C+OpenMP Program:

Setting up of environment: module load compiler/intel/2018.2.199

compilation: icc -O3 -xHost -qopenmp <<prog_name.c>>

Execution: ./a.out

C+MPI Program:

Setting up of environment: module load compiler/intel/2018.2.199

compilation: mpiicc -O3 -xHost <<prog_name.c>>

Execution: mpirun -n <<num_procs>> ./a.out

C+MKL Program:

Setting up of environment:

module load compiler/intel/2018.2.199

compilation: icc -O3 -xHost -mkl <<prog_name.c>>

Execution: ./a.out

CUDA:

Setting up of environment: module load cuda/10.1

compilation: nvcc <<prog_name.cu>> -lcublas

Execution:./a.out

OpenACC:

Setting up of environment: module load compiler/nvhpc/21.2

Compilation: pgcc -acc -fast -Minfo=all -ta=tesla:managed -Mprof=ccff

<<prog_name.c>>

Execution:./a.out

Job Submission on Scheduler (SLURM):

A sample job submission scripts for each of the sample programs is given. Upon

completion/termination of the execution, two files (output and error) are generated.

A few sample commands for SLURM are as follows:

Sinfo Lists out the status of resources in the system

squeue Lists out the Job information in the system

sbatch

<<job_script>>

Submitting a job to the scheduler

 Page | 33

scancel

<<job_name>>

Delete a job

 Page | 34

Job Scheduling on PARAM

Sanganak

Scheduler

PARAM Sanganak has Slurm-19.05.0-1 (open source) as a workload manager for HPC facility.

Slurm is a widely used batch scheduler in top500 HPC list. PARAM Sanganak consists of

three types of compute nodes: i.e. CPU only (192 GB) nodes, High memory (768 GB) nodes

and nVIdia GPGPU (192 GB) enabled.

Following partitions/queues have been defined for different requirements

1. standard: CPU, High memory and GPU Jobs

2. gpu: GPU and CPU jobs

3. hm: High memory intensive jobs

All users can submit to the Standard partition. The standard Partition contains CPU, high

memory and GPU nodes. GPU partition contains only gpu nodes. If user wants to submit a

job only on gpu nodes, he/she can use gpu partition. If user wants to submit a job only on

high memory, he/she can use hm partition.

Resource limits like priority etc., will be defined as per client requirements.

sinfo

This Slurm command is used to view available partition and node information on the

cluster.

Figure 9 – View of available partition and node information on the cluster

 Page | 35

Walltime

Currently, the default wall time is 4 days. If more than 4 days are required, the wall time can

be explicitly specified on command line as:

 srun -t walltime <hours>

or as part of the submit script.

If a job requires more than 4 days, a special request needs to be sent to HPC coordinator

and will be dealt with on a case by case basis.

Per user

• Every user will have quota of 500 GB in HOME file system (/home) and 1TB in
SCRATCH file system(/scratch).

• Users are recommended to copy their execution environment and input files to
scratch file system (/scratch/<username>) during job running and copy output data
back to HOME area.

• Other resource limits are like number of CPU nodes per user, number of running jobs
at a time per user etc. will be defined as per the user requirements.

Scheduling Type

PARAM Sanganak has been configured with Slurm’s backfill scheduling policy. It is good for

ensuring higher system utilization; it will start lower priority jobs if doing so does not delay

the expected start time of any higher priority jobs. Since the expected start time of pending

jobs depends upon the expected completion time of running jobs, reasonably accurate time

limits are important for backfill scheduling to work well.

JOB PRIORITY

The job's priority at any given time will be a weighted sum of all the factors that have been

enabled in the slurm.conf file. Job priority can be expressed as:

Job_priority =

 (PriorityWeightAge) * (age_factor) +

 (PriorityWeightFairshare) * (fair-share_factor) +

 (PriorityWeightJobSize) * (job_size_factor) +

 (PriorityWeightPartition) * (partition_factor) +

 (PriorityWeightQOS) * (QOS_factor) +

 SUM(TRES_weight_cpu * TRES_factor_cpu,

 TRES_weight_<type> * TRES_factor_<type>,

 ...)

 Page | 36

All of the factors in this formula are floating point numbers that range from 0.0 to 1.0. The

weights are unsigned, 32 bit integers. The job's priority is an integer that ranges between 0

and 4294967295. The larger the number, the higher the job will be positioned in the queue,

and the sooner the job will be scheduled. A job's priority, and hence its order in the queue,

can vary over time. For example, the longer a job sits in the queue, the higher its priority will

grow when the age weight is non-zero.

Age Factor: The age factor represents the length of time a job has been sitting in the queue

and eligible to run. Current value for Age factor is 10000.

Job Size Factor: The job size factor correlates to the number of nodes or CPUs the job has

requested. Current value for Job Size factor is 1000.

Partition Factor: Each node partition can be assigned an integer priority. The larger the

number, the greater the job priority will be for jobs that request to run in this partition.

Current value for partition factor is 15000.

Quality of Service (QOS) Factor: Each QOS can be assigned an integer priority. The larger

the number, the greater the job priority will be for jobs that request this QOS. Current value

for QOS factor is 1000.

Fair-share Factor: The fair-share component to a job's priority influences the order in which

a user's queued jobs are scheduled to run based on the portion of the computing resources

they have been allocated and the resources their jobs have already consumed. Current

value for fair-share factor is 100000.

SSHARE

This tool is for listing the shares of association to a cluster.

Figure 10 - Listing the shares of association to a cluster.

 Page | 37

ACCOUNTING

Accounting system tracks and manages HPC resource usage. As jobs are completed or

resources are utilized, accounts are charged, and resource usage is recorded. Accounting

policy is like a bank/Credit System, where each department can be allocated with some pre-

defined budget on a quarterly basis for CPU usage. As and when the resources are utilized,

the amount will be deducted. The allocation will be reset at end of every quarter.

sacct

This command can report resource usage for running or terminated jobs including individual

tasks, which can be useful to detect load imbalance between the tasks.

sstat

This command can be used to status only currently running jobs. It also can give you

sreport

This command can be used to generate reports based upon all jobs executed in a particular

time interval.

Standard priority queue

CPU xp/minute/core ! Useful for charging calculations

GPU/minute/accelerator ! Useful for charging calculations

High Priority queue

CPU xx/minute/core ! Useful for charging calculations

GPU/minute/accelerator ! Useful for charging calculations

Storage Policy

FileSystem Size Quota Access Retention Period

/home

~576 TiB 500GB RW Unlimited

/scratch

~1728 TiB 1TB RW 60 days

 Page | 38

Debugging Your Codes

Introduction

A debugger or debugging tool is a computer program that is used to test and debug other

programs (the "target" program).

When the program "traps" or reaches a preset condition, the debugger typically shows the

location in the original code if it is a source-level debugger or symbolic debugger, commonly

now seen in integrated development environments.

Debuggers also offer more sophisticated functions such as running a program step by step

(single-stepping or program animation), stopping (breaking) (pausing the program to

examine the current state) at some event or specified instruction by means of a breakpoint,

and tracking the values of variables.

Some debuggers have the ability to modify program state while it is running. It may also be

possible to continue execution at a different location in the program to bypass a crash or

logical error.

Basics How Tos

Compilation

Compilation with a separate flag ‘-g’ is required since the program needs to be linked with

debugging symbols.

gcc -g <program_name.c>

e.x. gcc -g random_generator.c

Running with gdb:

gdb is a command line utility available with almost all Linux systems’ compiler collection

packgages.

gdb <executable.out>

e.x. gdb a.out

Basic gdb commands (to be executed in gdb command line window):

Start:

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Stepping_(debugging)
https://en.wikipedia.org/wiki/Program_animation
https://en.wikipedia.org/wiki/Breakpoint

 Page | 39

Starts the program execution and stops at the first line of the main procedure. Command

line arguments may be provided if any.

Run:

Starts the program execution but does not stop. It stops only when any error or program

trap occurs. Command line arguments may be provided if any.

Help:

Prints the list of command available. Specifying ‘help’ followed by a command (e.x. ‘help

run’) displays more information about that command.

File <filename>:

Loads a binary program that is compiled with ‘-g’ flag for debugging.

List [line_no]

Displays the source code (nearby 10 lines) of the program in execution where the execution

stopped. If ‘line_no’ is specified, it display the source code (10 lines) at the specified line.

Info:

Displays more information about the set of utilities and saved information by the debugger.

For example; ‘info breakpoints’ will list all the breakpoints, similarly ‘info watchpoints’ will

list all the watchpoints set by the user while debugging their programs.

Print <expression>:

Prints the values of variables / expression at the current running instance of the program.

Step N:

Steps the program one (or ‘N’) instructions ahead or till the program stops for any reason.

Steps through each and every instruction even if it is function call (only function or

instruction compiled with debugging flags).

next:

This command also steps through the instructions of the program. Unlike ‘step’ command, if

the current source code line calls a subroutine, this command does not enter the

subroutine, but instead steps over the call, if effect treating it as a single source line.

Continue:

 Page | 40

This command continues the stopped program till the next breakpoint has occurred or till

the end of the program. It is used to continue from a paused/debug point state.

Break [sourcefile:]<line_no> [if condition]:

Stops the program at the specified line number and provides a breakpoint for the user.

Specific source code file and breakpoint based on a condition can also be set for specific

cases. You can also view the list of breakpoints set, by using the ‘info breakpoints’

command.

watch <expression>:

A watchpoint means break the program or stop the execution of the program when the

value of the expression provided is changed. Using watch command specific variables can be

watched for value changes. You can also view the list of watchpoints by using the ‘info

watchpoints’ command.

Delete <breakpoint number>

Delete command deletes a breakpoint or a watchpoint that has been set by a user while

debugging the program.

Backtrace:

Prints the backtrace of all stack frames of the program. Provides the call stack and more

other information about the running program.

These are some of the most powerful utilities that can be used to debug your programs

using gdb. gdb is not limited to these commands and contains a rich set of features that can

allow you to debug multi-threaded programs as well. Also, all the commands, along with the

ones listed above have ‘n’ number of different variants for more in-depth control. Same can

be utilized using the help page of gdb.

Using gdb (example – inspecting the code)

For this case study, we have a small program that generates a long unique random number

for each run.

Let’s look at the code we have.

 Page | 41

Figure 11 – snapshot of debugging process

Things to note:

1) We have a few libraries included for the functions that are used in the program.

2) We have two ‘#define’ statements:

a. ‘N’ for the number of times the ‘rand_fract’ function will spend in calculating

the random number.

b. ‘N_LEN’ for the length of the final random number string generated.

Currently it is set to ‘100’ which means that the long random number will be

of length 100.

3) Then, we have a function by name ‘rand_fract’ that iterates over two loops and using

the values of iterators (‘i’ and ‘j’), it calculates a small random number. Since, ‘rand()’

function is used for the outer loop, its number of iterations cannot be clearly defined

which gives the function a random nature.

4) The next function is as simple as its name is. It just takes an unsigned integer and

returns its factorial.

 Page | 42

PART 2:

Figure 12 – Snapshot of debugging process

Things to note:

1) This is the main function of the program.

2) The flow of the main function is as follows:

a. The program first sets a random seed using the process-id of the program.

b. It calls ‘rand_fract’ function and the resultant random number is operated by

a modulo 10 operation. Finally, the result is stored in the variable ‘f1’.

c. Next the factorial of the obtained ‘f1’ is calculated and stored in

‘random_fract’.

d. This result is again passed through a modulo ‘N_LEN + 1’ and stored in

‘normalized_fact’.

e. Then a dynamic array is constructed and partially filled will integer values in

descending order from the ‘normalized_fact’ value.

 Page | 43

f. Finally, the partial array is printed by mixing the value of the array with rand()

function values followed by a modulo 10 operation.

g. The remaining partial part of final random value is generated using a basic

rand() modulo 10 operation.

Using gdb (example – using the debugger)

The code that we looked upon seems correct, as well as it compiles successfully without any

errors. But, when we run this code snippet, this is the result we get.

Figure 13- output at a debugging stage

The program ended up with a core dump without giving much information but just ‘Floating

point exception’. Now let’s compile the code with debugging information and run the

program simply with gdb.

Figure 14 – Snapshot of debugging process

 Page | 44

Here we compiled the code using ‘-g’ and then used the ‘run’ command we studied earlier

for running the program. You can observe that the debugger stopped at line number 13

where the ‘Floating point exception (SIGFPE)’ occurred. At this point we can even go and

check the code at line number 13. But for now, let’s check what other information we can

get from the debugger. Let’s check the values of the variables ‘i’ and ‘j’ at this point.

Figure 15 – Output depicting “Arithmetic Exception”

The values of both ‘i’ and ‘j’ appear to be ‘0’ and thus a divide by zero exception is what

caused our program to terminate. Let’s update the code such that the value of ‘i’ and ‘j’ will

never become ‘0’. This is the modified code:

Figure 16 – Snapshot of debugging process

Thus, we just updated the loop index variables to start from ‘1’ instead of ‘0’. Thus, using

gdb, it was very simple to identify the point where the error occurred. Let’s re-run our

updated code and check what we get.

Figure 17 – Well, we dumped core !!

 Page | 45

WHAT!? This is unexpected. We just cured the error part of our program and still getting an

FPE. Let’s go through the debugger and check where the error point is right now.

Figure 18 - Snapshot of debugging process

The debugger output shows that the error occurred on the same line as earlier. But in this

case, the value of ‘i’ and ‘j’ are not ‘0,0’ but they are ‘1, -1’ which is causing the denominator

at line 13 to be ‘0’ and thus, causing an FPE. In addition to print commands, we have also

issued the ‘list’ command which shows the nearby 10 lines of the code where the program

stopped.

 Page | 46

You can observe that some bugs in the programs are easier to debug but some aren’t.

We will have to dig in much more to find out what is going on. Also, to be noted, we have

our inner loop iterating from 1 to N (which is 100), but still the value of ‘j’ is printed out to

be ‘-1’. How is this even possible!? Smart programmers would have the problem identified,

but let’s stick to the basics on how to gdb. Let us use the ‘break’ command and set a

breakpoint at line number 13 and observe what is going on.

Figure 19 – setting breakpoint

Thus, using the command ‘break 13’ we have set the breakpoint at line number 13 which

was verified using the ‘info breakpoint’ command. Then, we reran the program with the

‘run’ command. At line 13 the program stopped and using ‘print’ command we checked the

values of ‘i’ and ‘j’. t this point, all seems to be well. Now, let’s proceed further. For stepping

1 instruction we can use the ‘step’ command. Let’s do that and observe the value of ‘j’.

 Page | 47

Figure 20 – single stepping through to catch error !!

You can observe the usage of the ‘step’ command. We are going through the program line

by line and checking the values of the variable ‘j’.

There seems to be a lot of writing/typing of the ‘step’ command just to proceed with the

program. Since, we have already set a breakpoint at line 13, we can use another command

called as ‘continue’. This command continues the program till the next breakpoint or the

end of the program.

 Page | 48

Figure 21 – Debugging continued

You can see that we reduced the typing of ‘step’ command by 3 times to a ‘continue’

command just 1 time. But this is also having us write ‘continue’ and ‘print’ multiple times.

Let us use some other utility in gdb known as ‘data breakpoints’ also known as watchpoints.

But before that, let us delete the existing breakpoint using the ‘delete’ command.

Figure 22 – Debugging continued

Now let us see how to set a watchpoint.

 Page | 49

Figure 23 – Setting a watch point

Thus, using the command ‘watch j’ we have set a watchpoint over ‘j’. Now every time when

the value of ‘j’ changes, a break will occur. You can also note the old and new values of ‘j’

printed out at each break. Another point to note is that after having one ‘continue’

command, the program had a break. Further, by just pressing the ‘Enter/Return’ button on

the keyboard, the continue command was repeated. Thus, by pressing the ‘Enter/Return’

button, the last command is repeated. At this point, we have learned much about the

debugger, but we are still not able to proceed fast with our error. Is there any other way to

procced? Well, yes!!

 Page | 50

We want to observe at the point where the value of ‘j’ reaches closer to ‘N i.e. 100’. Which

means that we are only concerned about what happens after ‘j’ reaches 99. Here, we land

up on using what is called as conditional breakpoints. First, we will delete our watchpoint

and then make use of the conditional breakpoint.

Figure 24 – Debugging continued

You can observe another variant of the ‘break’ command. We have explicitly stated the file

and the line number along with a condition to stop. This is useful, when the source code is

large and having multiple files. After setting a conditional break, we stopped at the point

where the value of ‘j’ becomes ‘99’. Now, let us see what happens next. Since, this is a

critical point at which we could observe the program, it is better if we step in the program

using the ‘step’ command instead of relying on any break/watch points.

 Page | 51

Figure 25 – Well, Back to square one !!

This, is unexpected!! The value of ‘j’ should never be 100 or anything above it.

Thus, something is wrong with the conditional statement!!

By observation, we have figured out that the condition is itself wrong. It should have been ‘j

< N’ instead of ‘i < N’. This is a silly mistake of the programmer that lead us to this much of

an effort.

Also, the value of ‘j’ which was observed as ‘-1’ was an outcome of the ‘short’ datatype

overflow i.e. the value of ‘j’ went from 1 to 32767 (assuming short as 2 bytes) and then

from -32768 to -1.

Finally, a hard programming bug was discovered. Let us correct this error and rerun the

program.

Figure 26 – Again Dumping Core!! Things are getting interesting or frustrating or both !!

 Page | 52

This is strange!!

Sometimes the program is getting the correct output, but sometimes, we are getting a

segmentation fault. Debugging such a program may be tricky since the occurrence of the

bug is low. We will proceed with our standard debugger steps to identify the error.

Figure 27 – Debugging continued

We compiled the code and ran it using the debugger. But the program completed

successfully. Let us rerun it till a point where the program fails.

Figure 28 – Debugging continued

Here we observe a point where the program exited at the function ‘factorial’.

This is a point where the debugger didn’t give much information about what the value of

the variable ‘x’ was. It just pointed out that the program failed at the function named

‘factorial’. That’s it!

Another reason for such kind of output would be because of the recursive nature of the

function. The stack frame where the function ‘factorial’ failed could be in a long nest of

recursive calls. At such points, it would be better to inspect the program at an earlier point

 Page | 53

and look for errors. Let us have a breakpoint before the ‘factorial’ function was called and

view the value of the parameters that are passed to the function.

Figure 29 – Debugging continued (Will it ever end?)

Thus, we have set a breakpoint before the call of the function ‘factorial’ and ran the

program. For the value of ‘f1 = 8’ for the ‘factorial’ function the process seems to exit

normally. Let us rerun.

Figure 30 – We are almost there !!

 Page | 54

Unexpectedly, we have got the value of ‘f1’ as ‘-8’ and the program seems to have crashed.

Let us observe the ‘rand_fract’ function and ‘factorial’ function once again. And study the

behavior of the functions where we could get a negative number.

Figure 31 – Debugging continued

Important points here to observe are:

The ‘rand_fract’ function is returning a datatype of ‘short’ while the calculation of the return

value could be significantly large which may overflow the size of ‘short’, thus, causing a

negative answer.

The function ‘factorial’ is expecting a value of type ‘unsigned int’. Since the value passed to

the function is a negative value, having an implicit conversion from a negative number to an

unsigned number means that we are having a very large value passed to the factorial

function.

Also, since the ‘factorial’ function is recursive, passing a very large number to it could cause

multiple calls to the same function and thus, overflowing the stack provided to the user.

 Page | 55

Now let us, step further into our program and see whether what we are discussing is the

same behavior that is being observed.

Figure 32 – At last a clue!!!

This is what we had expected!!

A number ‘-1’ passed to the ‘factorial’ function is being implicitly converted to a very large

number ‘4294967295’.

Stepping in more reveals the recursive behavior of the ‘factorial’ function i.e. each call is

having a sub call to the same function with one value less. Thus, what to do in these types of

cases. Assume you have a large code where these functions are called from multiple

locations.

 Page | 56

Modifying the signature of any of the function means changing the code everywhere where

the function is called. This is not affordable!! These are some cases, where a choice is to be

made where patching the code is necessary for semantics of the program.

Let us observe a piece of code where this change can be made and then test our program

for the expected results.

Figure 33 - Correction applied !!

By observing the code, we find out that the expected value of ‘f1’ is between ‘0 to 9’

(because of the modulo 10 operation).

Thus, without changing the signature of any function, we have inserted a patch (the

highlighted) portion, that maintains the semantics of the code as well cures the problem

that we had. Now let us just run and check our final program.

 Page | 57

Figure 34 – Resolved !!!

Thus, we are getting the correct results as expected.

Conclusions

We started with a program that we assumed to be functional but then the program ended

up with bugs that were not straightforward. We then explored the power of the debugger

and the various ways to identify the bugs in our program. We looked upon the easy

solutions, and slowly migrated towards the type of bugs that are not easily traceable.

Finally, we identified and corrected all the bugs in our program with the help of the

debugger and arrived at a bug free code.

Points to Note

 Bugs in the program cannot be necessarily a compilation error.

 One type of error can be caused by multiple bugs in the same line of code.

 Sometimes, it is not possible to change the code even when the problem is

identified. The best way to cure this is to study the behavior of the code and apply

patches wherever necessary.

 Using simple utilities from the ‘GNU Debugger’ can help in getting rid of problem

causing bugs in large programs.

 Page | 58

Overall Coding Modifications Done

Figure 35 – What all we did to get things right!

 Page | 59

Machine Learning / Deep Learning Application

Development

Most of the popular python based machine learning/deep learning libraries are installed on

PARAM Sanganak system. While developing and testing their applications, users have option

to choose different environment / runtime setup like “virtual environment-based python

libraries” or “conda runtime based python libraries”.

For most of the major environment (virenv, conda) different modules are prepared. Users

can check the list of the modules by using “module avail” command. Shown below is an

example of loading conda environment in current bash shell and continue with application

development.

Once logged into PARAM Sanganak HPC Cluster, check which all libraries are available,

loaded in current shell. To check list of modules loaded in current shell, use the command

given below:

 $ module list

To check all modules available on the system, but not loaded currently, use the command

given below:

 $ module avail

To activate conda environment on PARAM Sanganak, load module “conda-python/3.7” as

shown below:

$ module load conda-python/3.7

Conda environment has been installed with most of the popular python packages as shown

below

Tensorflow Tensorflow-gpu Mpi4py Keras

Theano Scipy Scikit-Learn Pytorch

Once “conda-python/3.7” module is loaded, end-users can use all libraries inside their

python program. Many other modules based on virtual env are available on the system.

 Page | 60

Users can load those libraries using “module load” command and use them for their

applications.

How to Install your own Software?

There are two approaches to install software.

1. System wide installation

2. Local installation.

System wide installation can be done by only admin. If you wish to do this, please approach

system administrator. User can do local installation in their home directory.In this section

we are describing the installation of HMMER application in user’s home directory.

Local installation

Step 1. Login to Sanganak cluster by using your credential.

Step 2. Download the software that you want to install . For example to download HMMER

software use below command.*

$ wget http://eddylab.org/software/hmmer/hmmer.tar.gz

Step 3. Untar the file. (if your software in zip format use unzip command)

$ tar zxf hmmer.tar.gz

Step 4. go to the software folder.

$ cd hmmer-3.3

Step 5. configure the installation path.

$./configure --prefix /your/install/path

Step 6. now run the 'make' command for install the software on installation path.

$ make

The newly compiled binaries are now in the src directory.

Step 7. Runs a test suite that checks for errors in the software (optional)

 Page | 61

$ make check

Step 8. run 'make install' to install the programs and man pages in your location mention in

step 2 #

$ make install

By default, programs are installed in /usr/local/bin and man pages in

/usr/local/share/man/man1/, if you do not provide installation path in step 2.

* This is general instruction for installation, please refer the installation instruction or

manual or readme file that comes with software for more details.

if you get any dependency error, resolve that or ask system admin to install that

dependency if not installed.

Reference link: http://hmmer.org/documentation.html

http://hmmer.org/documentation.html

 Page | 62

Some Important Facts

About File Size

The global/home is served by a number of storage arrays. Each of the storage array contains

a portion of the global/home. The size of a disk in the storage array is 2TB (2000 GB).

Technically, the size of a file can be about 2000 GB (which is really big). However, since the

disk is shared by a large number of files, effectively the size of a single file will be far smaller.

Normally, this file size is kept to be about few GBs which is sufficient for most of the users.

However, if you wish to have file sizes which are larger than this, you need to create files

ACROSS disks and this process is known as ‘striping’.

lfs setstripe -c 4 .

After this has been done all new files created in the current directory will be spread over 4

storage arrays each having 1/4th of the file. The file can be accessed as normal no special

action needs to be taken. When the striping is set this way, it will be defined on a per

directory basis so different directories can have different stripe setups in the same file

system, new subdirectories will inherit the striping from its parent at the time of creation.

We recommend users to set the stripe count so that each chunk will be approx. 200-300GB

each, for example

File Size Stripe count Command

500-1000 GB 4 lfs setstripe -c 4 .

1000 – 2000 GB 8 lfs setstripe -c 8

Once a file is created with a stripe count, it cannot be changed. A user by themselves are

also able to set stripe size and stripe count for their directories and A user can check the set

stripe size and stripe count with command:

lfs getstripe <path to the direcory>

To set the stripe count as

lfs setstripe -c 4 -s 10m <path to the direcory>

The options on the above command used have these respective functions.

 Page | 63

• -c to set the stripe count; 0 means use the system default (usually 1) and -1 means
stripe over all available OSTs (lustre Object Storage Targets).

• -s to set the stripe size; 0 means use the system default (usually 1 MB) otherwise use
k, m or g for KB, MB or GB respectively

Little-Endian and Big-Endian issues?

By and large, most of the computers follow little-endian format. This essentially means that

the last byte of the binary representation of data is stored first. However, there is another

way of representing data (used in some machines) where in the first byte of the binary

representation of data is stored first. When binary files are to be read across these different

kinds of machines, bytes need to be re-ordered. Many compilers do support this feature.

Please explore this aspect, if a perfectly working code on a given machine, fails to get

executed of another machine (with a different processor).

* * *

 Page | 64

Best Practices for HPC

1. Do NOT run any job which is longer that few minutes on the login nodes. Login node is
for compilation of job. It is best to run the job on computes. (compute nodes)

2. It is recommended to go through the beginner’s guide in /home/apps/cdac/samples
This should serve as a good starting point for the new users.

3. Use the same compiler to compile different parts/modules/library-dependencies of an
application. Using different compilers (e.g. pgcc + icc) to compile different parts of
application may cause linking or execution issues.

4. Choosing appropriate compiler switches/flags/options (e.g. –O3) may increase the
performance of application substantially (accuracy of output must be verified). Please
refer to documentation of compilers (online / docs present inside compiler installation
path / man pages etc.)

5. Modules/libraries used for execution should be the same as that used for compilations.
This can be specified in the Job submission script.

6. Be aware of the amount of disk space utilized by your job(s). Do an estimate before
submitting multiple jobs.

7. Please submit jobs preferably in $SCRATCH. You can back up your results/summaries in
your $HOME

8. $SCRATCH is NOT backed up! Please download all your data to your Desktop/ Laptop.

9. Before installing any software in your home, ensure that it is from a reliable and safe
source. Ransomware is on the rise!

10. Please do not use spaces while creating the directories and files.

11. Please inform PARAM Sanganak support when you notice something strange - e.g.
unexpected slowdowns, files missing/corrupted etc.

 Page | 65

Installed Applications/Libraries

Following is the list of few of the applications from various domains of science and

engineering installed in the system.

HPC Applications

Bio-informatics

MUMmer, HMMER, MEME,

Schrodinger, PHYLIP,

mpiBLAST, ClustalW,

Molecular Dynamics NAMD (for CPU and GPU),

LAMMPS, GROMACS

Material Modeling,

Quantum Chemistry

Quantum-Espresso, Abinit,

CP2K, NWChem,

CFD OpenFOAM, SU2

Weather, Ocean, Climate WRF-ARW, WPS (WRF),

ARWPost (WRF), RegCM,

MOM, ROMS

Deep Learning Libraries
cuDNN, TensorFlow, Tensorflow with Intel Python ,

Tensorflow with GPU, Theano, Caffe , Keras , numpy,

Scipy, Scikit-Learn, pytorch.

Visualization Programs GrADS, ParaView, VisIt, VMD

Dependency Libraries NetCDF, PNETCDF, Jasper, HDF5, Tcl, Boost, FFTW

Standard Application Programs on PARAM Sanganak

The purpose of this section is to expose the users to different application packages which

have been installed. Users interested in exploring these packages may kindly go through the

scripts, typical input files and typical output files. It is suggested that, at first, the users may

submit the scripts provided and get a feel of executing the codes. Later, they may change

the parameters and the script to meet their application requirements.

LAMMPS Applications

LAMMPS is an acronym for Large-scale Atomic/ Molecular Massively Parallel Simulator. This

is extensively used in the fields of Material Science, Physics, Chemistry and may others.

More information about LAMMPS may please be found at https://lammps.sandia.gov .

https://lammps.sandia.gov/

 Page | 66

1. The LAMMPS input is in.lj file which contains the below parameters.

Input file = in.lj

3d Lennard-Jones melt

variable x index 1

variable y index 1

variable z index 1

variable xx equal 64*$x

variable yy equal 64*$y

variable zz equal 64*$z

units lj

atom_style atomic

lattice fcc 0.8442

region box block 0 ${xx} 0 ${yy} 0 ${zz}

create_box 1 box

create_atoms 1 box

mass 1 1.0

velocity all create 1.44 87287 loop geom

pair_style lj/cut 2.5

pair_coeff 1 1 1.0 1.0 2.5

neighbor 0.3 bin

neigh_modify delay 0 every 20 check no

fix 1 all nve

run 1000000

2. THE LAMMPS RUNNING SCRIPT

#!/bin/sh

#SBATCH -N 2

#SBATCH --ntasks-per-node=40

#SBATCH --time=02:50:20

#SBATCH --job-name=lammps

#SBATCH --error=job.%J.err_2_node_40

#SBATCH --output=job.%J.out_2_node_40

#SBATCH --partition=standard

#SBATCH --exclusive

module unload gnu8/8.3.0

module load intel/2018.2.199

source

/opt/ohpc/pub/apps/intel/2018_2/compilers_and_libraries_2018.2.199/linux/mk

l/bin/mklvars.sh intel64

export I_MPI_FALLBACK=disable

 Page | 67

export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=9

cd /home/manjunath/LAMMP_TEST/LAMMPS_2018/lammps-22Aug18/bench

export OMP_NUM_THREADS=1

time mpiexec.hydra -n $SLURM_NTASKS -genv OMP_NUM_THREADS 1

/home/manjunath/LAMMP_TEST/LAMMPS_2018/lammps-

22Aug18/src/lmp_intel_cpu_intelmpi -in in.lj

3. LAMMPS OUTPUT FILE.

LAMMPS (22 Aug 2018)

 using 1 OpenMP thread(s) per MPI task

Lattice spacing in x,y,z = 1.6796 1.6796 1.6796

Created orthogonal box = (0 0 0) to (107.494 107.494 107.494)

 8 by 10 by 16 MPI processor grid

Created 1048576 atoms

 Time spent = 0.048476 secs

Neighbor list info ...

 update every 20 steps, delay 0 steps, check no

 max neighbors/atom: 2000, page size: 100000

 master list distance cutoff = 2.8

 ghost atom cutoff = 2.8

 binsize = 1.4, bins = 77 77 77

 1 neighbor lists, perpetual/occasional/extra = 1 0 0

 (1) pair lj/cut, perpetual

 attributes: half, newton on

 pair build: half/bin/atomonly/newton

 stencil: half/bin/3d/newton

 bin: standard

Setting up Verlet run ...

 Unit style : lj

 Current step : 0

 Time step : 0.005

Per MPI rank memory allocation (min/avg/max) = 2.699 | 2.703 | 2.708 Mbytes

Step Temp E_pair E_mol TotEng Press

 0 1.44 -6.7733681 0 -4.6133701 -5.0196704

 1000000 0.65695755 -5.7125359 0 -4.7271005 0.48799127

Loop time of 723.716 on 1280 procs for 1000000 steps with 1048576 atoms

Performance: 596918.946 tau/day, 1381.757 timesteps/s

99.5% CPU use with 1280 MPI tasks x 1 OpenMP threads

MPI task timing breakdown:

Section | min time | avg time | max time |%varavg| %total

Pair | 424.38 | 435.47 | 461.05 | 26.2 | 60.17

Neigh | 59.782 | 60.365 | 62.991 | 3.9 | 8.34

Comm | 193.24 | 219.39 | 231.11 | 38.5 | 30.31

Output | 0.00013494 | 0.00085223 | 0.0088639 | 0.0 | 0.00

Modify | 6.4813 | 6.6462 | 7.541 | 5.6 | 0.92

Other | | 1.841 | | | 0.25

Nlocal: 819.2 ave 845 max 786 min

Histogram: 3 2 34 115 256 372 315 137 33 13

Nghost: 2417.97 ave 2468 max 2369 min

Histogram: 8 31 81 216 314 327 202 76 22 3

 Page | 68

Neighs: 30698 ave 32432 max 28796 min

Histogram: 4 16 47 194 306 325 245 103 34 6

Total # of neighbors = 39293494

Ave neighs/atom = 37.4732

Neighbor list builds = 50000

Dangerous builds not checked

Total wall time: 0:12:03

OpenFOAM

openFOAM is a free, opensource software which covers most areas of Engineering and

Science. It can be used to solve very interesting problems in fields ranging from Turbulence,

Heat transfer, Acoustics, Electromagnetics, complex fluid flows including chemical reactions,

solid mechanics and a lot more. Please follow the link https://www.openfoam.com to

get more information.

Description of Inputs for openFOAM

Input file is taken from NASA website which does wing body simulation. The data can be

copied from /home/apps/Data/OpenFOAM path on PARAM Sanganak

Grid size: 10 million
Solver: sonicFoam
Iterations: 4000
Decomposition of grid is done using Metis.

Script of OpenFOAM

#!/bin/sh

#SBATCH -N 50

#SBATCH --ntasks-per-node=40

#SBATCH --threads-per-core=1

#SBATCH --ntasks=2000

#SBATCH --time=06:50:20

#SBATCH --job-name=openfoam

#SBATCH --error=job.%J.err_16_node_40

#SBATCH --output=job.%J.out_16_node_40

#SBATCH --partition=standard

###SBATCH --nodelist=cn[175-190]

##SBATCH --nodelist=cn[013-028]

ulimit -s unlimited

ulimit -c 0

#module load intel/2018.0.1.163

#module load intel/2019.5.281

module unload gnu8/8.3.0

module load openmpi-3.1.0_gcc_4.8.5

source /home/shwetad/OpenFOAM/GCC-openmpi/openfoam_bashrc_gcc_openmpi

https://www.openfoam.com/

 Page | 69

#source

/opt/ohpc/pub/intel2018/compilers_and_libraries_2018.1.163/linux/mkl/bin/mk

lvars.sh intel64

export I_MPI_FALLBACK=disable

export I_MPI_FABRICS=shm:dapl

export I_MPI_DEBUG=5

export I_MPI_PIN_PROCESSOR_LIST=0-39

############MXM Optimization############

export I_MPI_DAPL_SCALABLE_PROGRESS=1

export I_MPI_RDMA_TRANSLATION_CACHE=1

export I_MPI_FAIR_CONN_SPIN_COUNT=2147483647

export I_MPI_FAIR_READ_SPIN_COUNT=2147483647

#export I_MPI_ADJUST_REDUCE 2, I_MPI_ADJUST_BCAST 0

export I_MPI_RDMA_TRANSLATION_CACHE=1

export I_MPI_RDMA_RNDV_BUF_ALIGN=65536

export I_MPI_SPIN_COUNT=121

export I_MPI_DAPL_DIRECT_COPY_THRESHOLD=65536

#export I_MPI_DAPL_UD=enable

source /home/shwetad/OpenFOAM/Intel-2018/openfoam_bashrc_2018

#source /home/shwetad/OpenFOAM/openfoam_bashrc

export OMP_NUM_THREADS=1

cd /home/shwetad/OpenFOAM_DATA/NSM

#export FI_PROVIDER=mlx/ofi/verbs

rm -rf processor*

decomposePar

(time mpirun -np 2000 sonicFoam -parallel) 2>&1 | tee out_4000_NSM_50Node

Output Values after 4000 iterations:

forceCoeffs forces write:

 Cm = -8.50123

 Cd = 0.0327941

 Cl = -1.926

 Cl(f) = -9.46423

 Cl(r) = 7.53823

The said iterations complete in 2minutes 50 seconds on 50 nodes.

WRF Application

The Weather Research and Forecasting (WRF) Model is a next-generation mesocale

numerical weather prediction system designed to serve both operational forecasting and

atmospheric research needs. WRF is suitable for a broad spectrum of applications across

scales ranging from meters to thousands of kilometers. WRF was developed at the National

Center for Atmospheric Research (NCAR) which is operated by the University Corporation

for Atmospheric Research (UCAR), USA.

More information about WRF may please be found at:

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

For a reference run, the dataset used is as following with model simulation time being

reduced to 15 minutes:

https://www.mmm.ucar.edu/weather-research-and-forecasting-model

 Page | 70

Dataset: Single domain, large size. 2.5 km CONUS, June 4, 2005

(Ref: https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961289)

 The WRF input files used for reference run are present in /home/apps/Data/WRF/input/run

Changes/Suggestions to namelist.input

&time_control

 run_hours = 0,

 run_minutes = 15,

 io_form_history = 11, //parallel-netcdf

 io_form_restart = 11,

 io_form_input = 11,

 io_form_boundary = 11, //serial-netcdf

 io_form_auxhist2 = 2,

&dynamics

 use_baseparam_fr_nml = .t.,

&namelist_quilt // For no. of nodes (e.g. greater than 32

 nodes) using quilt servers gives better

 performance

 nio_tasks_per_group = 0,

 nio_groups = 1,

1. WRF job submission SLURM script

The following reference job script is placed in
/home/apps/Data/WRF/input/run/wrf_4n.sh

#!/bin/bash

#SBATCH -N 4

#SBATCH --ntasks-per-node=40

#SBATCH --time=00:30:00

#SBATCH --job-name=WRF_CONUS

#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

#SBATCH --partition=standard

cd $SLURM_SUBMIT_DIR

###Loading WRF environment

module load wrf/3.8.1/intel2018

###Creating list of nodes to map WRF MPI processes

mpiexec.hydra -n $SLURM_NTASKS hostname > hosts.txt

sort -u hosts.txt > hosts_wrf.txt

sed -i 's/$/:20/' hosts_wrf.txt

###Two OpenMP threads per MPI rank

WRFMPI=` expr $SLURM_NTASKS / 2 `

###Setting Intel MPI environment

https://www2.mmm.ucar.edu/wrf/WG2/benchv3/#_Toc212961289

 Page | 71

export I_MPI_DEBUG=9

export I_MPI_FALLBACK=disable

 (time mpiexec.hydra --machinefile hosts_wrf.txt -env I_MPI_PIN_DOMAIN

omp:compact -env OMP_NUM_THREADS=2 -env KMP_STACKSIZE=200m -n $WRFMPI

wrf.exe) >& 4n.2omp.wrf.out

To save execution command to out file

echo "(time mpiexec.hydra --machinefile hosts_wrf.txt -env I_MPI_PIN_DOMAIN

omp:compact -env OMP_NUM_THREADS=2 -env KMP_STACKSIZE=200m -n $WRFMPI

wrf.exe)" >> 4n.2omp.wrf.out

2. WRF Output Snippet

$tail rsl.out.0000

Timing for main: time 2005-06-04_06:14:45 on domain 1: 2.16898 elapsed seconds

Timing for main: time 2005-06-04_06:15:00 on domain 1: 2.16480 elapsed seconds

wrf: SUCCESS COMPLETE WRF

The above workload on four compute nodes took approximate execution time of 3min15sec

NAMD Application

Nano Scale Molecular Dynamics (NAMD) software for molecular dynamics simulation is

designed for high-performance simulations of Large Macro Molecular system on parallel

computers. This software also makes use of GPGPUs.

More information about NAMD may please be found at

http://www.ks.uiuc.edu/Research/namd/

Citation:

"NAMD was developed by the Theoretical and Computational Biophysics Group in the

Beckman Institute for Advanced Science and Technology at the University of Illinois at

Urbana-Champaign."

James C. Phillips, Rosemary Braun, Wei Wang, James Gumbart, Emad Tajkhorshid,

Elizabeth Villa, Christophe Chipot, Robert D. Skeel, Laxmikant Kale, and Klaus Schulten.

Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26:1781-

1802, 2005.

For a reference run, NAMD version 2.13 with following dataset has been used:

Dataset: STMV (virus) benchmark (1,066,628 atoms, periodic, PME)

(Ref: https://www.ks.uiuc.edu/Research/namd/utilities/)

Please follow the examples to get familiarized with writing scripts for using NAMD with CPU

cores and GPGPUs.

The NAMD input files and SLURM job scripts used for reference runs are present in

/home/apps/reference/namd/

http://www.ks.uiuc.edu/Research/namd/
https://www.ks.uiuc.edu/Research/namd/utilities/

 Page | 72

1. Contents of stmv.namd file used for a reference run with numsteps increased to 5000

ADJUSTABLE PARAMETERS ##

structure stmv.psf

coordinates stmv.pdb

SIMULATION PARAMETERS ##

Input

paraTypeCharmm on

parameters par_all27_prot_na.inp

temperature 298

Force-Field Parameters

exclude scaled1-4

1-4scaling 1.0

cutoff 12.

switching on

switchdist 10.

pairlistdist 13.5

Integrator Parameters

timestep 1.0

nonbondedFreq 1

fullElectFrequency 4

stepspercycle 20

Constant Temperature Control

langevin on ;# do langevin dynamics

langevinDamping 5 ;# damping coefficient (gamma) of 5/ps

langevinTemp 298

langevinHydrogen off ;# don't couple langevin bath to hydrogens

Constant Pressure Control (variable volume)

useGroupPressure yes ;# needed for rigidBonds

useFlexibleCell no

useConstantArea no

langevinPiston on

langevinPistonTarget 1.01325 ;# in bar -> 1 atm

langevinPistonPeriod 100.

langevinPistonDecay 50.

langevinPistonTemp 298

cellBasisVector1 216.832 0. 0.

cellBasisVector2 0. 216.832 0.

cellBasisVector3 0. 0 216.832

cellOrigin 0. 0. 0.

PME on

PMEGridSizeX 216

PMEGridSizeY 216

PMEGridSizeZ 216

 Page | 73

Output

outputName stmv-output

outputEnergies 20

outputTiming 20

numsteps 5000

2. NAMD job submission SLURM script for GPGPUs
The reference job script is placed at /home/apps/reference/namd/namd_gpu_2.13.sh

#!/bin/bash

#SBATCH -N 5

#SBATCH --ntasks-per-node=40

#SBATCH --time=00:10:00

#SBATCH --job-name=NAMD_GPU

#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

#SBATCH --partition=gpu

cd $SLURM_SUBMIT_DIR

module load namd/2.13/impi2019v5/cuda

module unload gnu8/8.3.0

module load intel/2019.5.281

mpiexec.hydra -n $SLURM_NTASKS hostname > hosts.txt

sort -u hosts.txt > hosts_namd.txt

sed -i 's/$/:2/' hosts_namd.txt

NAMDMPI=` expr $SLURM_NTASKS / 20 `

export I_MPI_DEBUG=9

#export I_MPI_FABRICS=shm:dapl

export FI_PROVIDER=mlx

export I_MPI_FALLBACK=0

 (time mpiexec.hydra --machinefile hosts_namd.txt -n $NAMDMPI namd2

+ppn 19 +pemap 1-19,21-39 +commap 0,20 +setcpuaffinity +isomalloc_sync

+idlepoll ./stmv.namd +devices 0,1) >& 5N.namd.cuda.out

echo "(time mpiexec.hydra --machinefile hosts_namd.txt -n $NAMDMPI namd2

+ppn 19 +pemap 1-19,21-39 +commap 0,20 +setcpuaffinity +isomalloc_sync

+idlepoll ./stmv.namd +devices 0,1)" >> 5N.namd.cuda.out

mpiicc -v >> 5N.namd.cuda.out

icc -v >> 5N.namd.cuda.out

which namd2 >> 5N.namd.cuda.out

3. NAMD job submission SLURM script for CPUs
The reference job script is placed at /home/apps/reference/namd/namd_cpu_2.13.sh

#!/bin/bash

#SBATCH -N 16

#SBATCH --ntasks-per-node=40

#SBATCH --time=00:15:00

#SBATCH --job-name=NAMD

 Page | 74

#SBATCH --error=job.%J.err

#SBATCH --output=job.%J.out

#SBATCH --partition=standard

cd $SLURM_SUBMIT_DIR

module load namd/2.13/impi2019v5/cpu

module unload gnu8/8.3.0

module load intel/2019.5.281

mpiexec.hydra -n $SLURM_NTASKS hostname > hosts.txt

sort -u hosts.txt > hosts_namd.txt

sed -i 's/$/:2/' hosts_namd.txt

NAMDMPI=` expr $SLURM_NTASKS / 20 `

export I_MPI_DEBUG=9

#export I_MPI_FABRICS=shm:dapl

export FI_PROVIDER=mlx

export I_MPI_FALLBACK=0

mpiicc -v

 (time mpiexec.hydra --machinefile hosts_namd.txt -n $NAMDMPI namd2

+ppn 19 +pemap 1-19,21-39 +commap 0,20 +setcpuaffinity +isomalloc_sync

+idlepoll ./stmv.namd) >& 16N.namd.cpu.out

echo "(time mpiexec.hydra --machinefile hosts_namd.txt -n $NAMDMPI namd2

+ppn 19 +pemap 1-19,21-39 +commap 0,20 +setcpuaffinity +isomalloc_sync

+idlepoll ./stmv.namd)" >> 16N.namd.cpu.out

mpiicc -v >> 16N.namd.cpu.out

icc -v >> 16N.namd.cpu.out

which namd2 >> 16N.namd.cpu.out

4. NAMD Output Snippet

TIMING: 5000 CPU: 53.5804, 0.010235/step Wall: 53.6822, 0.0102851/step, 0 hours remaining,

5024.433594 MB of memory in use.

ETITLE: TS BOND ANGLE DIHED IMPRP

ELECT VDW BOUNDARY MISC KINETIC TOTAL

TEMP POTENTIAL TOTAL3 TEMPAVG PRESSURE GPRESSURE

VOLUME PRESSAVG GPRESSAVG

ENERGY: 5000 368697.5464 279967.9454 81941.7526 5087.5336 -

4524058.5568 385721.1155 0.0000 0.0000 945098.3696 -2457544.2937

297.2577 -3402642.6633 -2449021.7220 297.4163 -83.0695 -13.9811

10199588.8034 13.0980 11.6157

5. The above workload took approximate execution times as:

S. No. Resource Type No. of Compute

Nodes

ns/day Execution Time

(sec)

1 GPGPU (with CPU) 5 8 75

2 CPU 16 8 75

 Page | 75

Acknowledging the National Supercomputing

Mission in Publications

If you use supercomputers and services provided under the National Supercomputing

Mission, Government of India, please let us know of any published results including Student

Thesis, Conference Papers, Journal Papers and patents obtained.

Please acknowledge the National Supercomputing Mission as given below:

The support and the resources provided by PARAM Sanganak under the National

Supercomputing Mission, Government of India at the Indian Institute of Technology, Kanpur

are gratefully acknowledged.

Also, please submit the copies of dissertations, reports, reprints and URLs in which “National

Supercomputing Mission, Government of India” is acknowledged to:

HoD HPC Technologies,

Centre for Development of Advanced Computing,

CDAC Innovation Park,

S.N. 34/B/1,

Panchavati, Pashan,

Pune – 411008

Maharashtra

Communication of your achievements using resources provided by National

Supercomputing Mission, will help the Mission in measuring outcomes and gauging the

future requirements. This will also help in further augmentation of resources at a given site

of National Supercomputing Mission.

 Page | 76

Getting Help – PARAM Sanganak Support

We suggest that you kindly visit the link https://paramsanganak.iitk.ac.in/faq to know if the

problem you are facing has already been reported by some other user and has already been

solved. If this is the case, you will find a summary of the solution provided by the system

administrator there. If you do not find any mention of the issue being faced by you, please

refer to these four easy steps to generate a Ticket related to the issue you are experiencing.

Your Ticket will be assisted by the Sanganak Support team. The ticket generated will be

closed only when the related issue gets resolved.

You can generate a new ticket for any of the new issue that you are experiencing.

 Steps to Create a new ticket:

1) Place the URL (http://paramsanganak.iitk.ac.in/support) in your browser.

2) Click “Open a New Ticket”. Refer to Figure: 36 for the same.

Figure 36 – PARAM Sanganak Dashboard

https://paramsanganak.iitk.ac.in/faq/
http://paramsanganak.iitk.ac.in/support

 Page | 77

3) Search your issue in the FAQ first, before raising a ticket. Still if your issue is not

resolved then user may raise a ticket by clicking “Create New Ticket”. Refer to Figure: 37

for the same.

Figure 37 – FAQ

4) Sign in by providing the Username and Password. Refer to Figure: 38.

Figure 38 - Signing page.

 Page | 78

5) Select a “Help Topic” From the Dropdown and then Click on “Create Ticket”. Refer to

Figure: 39 for the same.

Figure 39 – Raise a Ticket.

 Page | 79

6) Please fill in the details of your issue in the fields given and then click on Create ticket.

Figure 40 - Snapshot of ticket generation

Once the Ticket will be generated, an acknowledgement e-mail will be sent to your official

e-mail address/email provided at the time of user creation. The e-mail will also contain

the Ticket number with reference to the ticket that you have generated.

In case of any difficulty while accessing Sanganak-Support you can reach us via e-mail at

sanganaksupport@iitk.ac.in

mailto:sanganaksupport@iitk.ac.in

 Page | 80

References

1. https://lammps.sandia.gov/

2. https://www.openacc.org/

3. https://www.openmp.org/

4. https://computing.llnl.gov/tutorials/mpi/

5. https://developer.nvidia.com/cuda-zone

6. https://www.mmm.ucar.edu/weather-research-and-forecasting-model

7. http://www.gromacs.org/

8. https://www.openfoam.com/

9. https://slurm.schedmd.com/

10. https://www.tutorialspoint.com/gnu_debugger/what_is_gdb.htm

11. https://nsmindia.in/

12. https://en.wikipedia.org/wiki/Deep_learning

13. https://docs.conda.io/en/latest/

14. https://docs.conda.io/en/latest/miniconda.html

15. https://www.tensorflow.org/

16. https://www.tensorflow.org/install

17. https://github.com/PaddlePaddle/Paddle

18. Keras, https://keras.io/

19. Pytorch, https://pytorch.org

20. https://mxnet.apache.org

21. https://software.intel.com/en-us/distribution-for-python

22. https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-
guide

End of the Document

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

