Short Term Power Procurement - Regulations & Practices

Rajesh K Mediratta
Director (Business Development)
Rajesh.mediratta@iexindia.com
In this presentation

Policy and Regulatory Enablers

Structure & Status of Short term market

Working and practices of short term market
POLICY & REGULATORY ENABLERS FOR SHORT TERM POWER MARKET
<table>
<thead>
<tr>
<th>Power Sector Pre-Electricity Act, 2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monopoly Suppliers (SEBs, Private Licensees)</td>
</tr>
<tr>
<td>Generators (CGSs, IPPs and SEBs) with capacity fully tied up</td>
</tr>
<tr>
<td>Each SEB had an allocated share in a Central/ Jointly owned station</td>
</tr>
<tr>
<td>Price setting by Central/ State Governments – SEBs hardly had any say</td>
</tr>
<tr>
<td>Entire sector developed on fixed rate return</td>
</tr>
<tr>
<td>Interplay of market forces remained non-existent</td>
</tr>
<tr>
<td>Utilities would back-down in case of low demand and resort to load shedding in case of excess demand</td>
</tr>
</tbody>
</table>

Power as tradable resource did not exist in this cost based regime
Legislative, Policy and Regulatory Developments

<table>
<thead>
<tr>
<th>Policy/Legislation/Regulation</th>
<th>Year</th>
<th>Key Focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity Act</td>
<td>2003</td>
<td>Sector re-organisation and competitive markets</td>
</tr>
<tr>
<td>National Electricity Policy</td>
<td>2005</td>
<td>Overall sector development</td>
</tr>
<tr>
<td>National Tariff Policy</td>
<td>2006</td>
<td>Performance based regulation</td>
</tr>
<tr>
<td>Guidelines for Competitive Bidding</td>
<td>2006</td>
<td>Transparent tariff based bidding for new generation</td>
</tr>
<tr>
<td>Hydropower policy</td>
<td>2008</td>
<td>Accelerated hydropower development</td>
</tr>
<tr>
<td>Terms and Conditions of Tariff, CERC</td>
<td>2009</td>
<td>Generation and Transmission tariff determination</td>
</tr>
<tr>
<td>Indian Electricity Grid Code Regulations</td>
<td>2010</td>
<td>Grid operations with competitive markets and renewables</td>
</tr>
<tr>
<td>REC Regulations</td>
<td>2010</td>
<td>Trading of renewable energy certificates</td>
</tr>
<tr>
<td>Power Market Regulations</td>
<td>2010</td>
<td>Transparent power market operations</td>
</tr>
<tr>
<td>Sharing of Transmission Charges Regulations</td>
<td>2010</td>
<td>Efficient transmission pricing</td>
</tr>
</tbody>
</table>
Legislative Enabler for operationalization of Power Markets in India: Electricity Act 2003

- Intent of the Act was to promote competition by “freeing” all possible avenues of procurement and sale of power:
 - De-licensing of generation (Sec-7)
 - Development of a multi-buyer multi-seller market in power (Restructuring of SEBs – Sec 131)
 - Trading – licensed activity (Sec-12).
 - Non Discriminatory open access to transmission (Sec 38-40) and Open Access in Distribution (Sec-42)

- Autonomous Regulatory Commission (Sec 76) to overlook functioning of Power markets

- Development of Power Market
 - Section 66 of the Electricity Act 2003 gives powers to the regulatory commissions to develop the power market including trading
Legislative Enabler for operationalization of Power Markets in India: Electricity Act 2003

- Electricity Act, 2003 – introduced Open Access

Open Access means “The non discriminatory provision for the use of transmission lines or distribution system by any licensee or consumer or a person engaged in generation in accordance with the regulations specified by the appropriate commission”

Open Access to inter-state transmission immediately allowed
National Tariff Policy- 2016

Objective

• Facilitate adequate and uninterrupted power to all categories of consumers
• Availability of electricity to consumers at reasonable and competitive rates
 Also
• Financial viability of the sector and attract investments
• Promote competition, efficiency in operations and improvement in quality of supply

Other objectives
• Promotion of RE sources of generation
• **Promote Hydro Projects to provide adequate peaking reserves, reliable grid operation and integration of variable renewable energy sources**
• Evolve dynamic & robust electricity infrastructure for better consumer services
• Creation of adequate capacity including reserves in generation, transmission and distribution in advance, for reliability of supply of electricity to consumers
• Transparency, consistency and predictability in regulatory approaches
Distribution

New provisions (8)

SERCs to prepare road-map for 24-hour supply by ‘22.

Lower Prices due to competition

- Discoms have flexibility of charging lower than approved tariffs if competitive conditions require so without having a claim on additional revenue requirement on this account in accordance with Section 62 of the Act.
Distribution

Performance Standards (8)

Objectives
• Supply of reliable and quality power of specified standards in an efficient manner and at reasonable rates

Performance Standards
• SERC to determine standards of performance with respect to quality, continuity and reliability of service for all consumers.
• Penalties may be imposed on licensees in accordance with section 57 of the Act for failure to meet the standards.

Are we compliant with the policy?
Distribution

Merit Order Dispatch provisions (8)

Merit order Dispatch purchases are allowed

- All power purchase costs need to be considered legitimate unless it is established that the MoD principle has been violated or power has been purchased at unreasonable rates.
Distribution

Power Procurement by Discoms (6)

- All future procurement thru competitive bidding as per CG guidelines
- All LT and MT PPAs two-part for Merit Order Despatch
- 24-Hour notice for unrequisitioned capacity for allowing Gen to sell
- Benefits over VC to be shared 50:50, if not already provided in the PPA.
- **Change of Law** allowed to be pass-through
Renewable Energy (6.4)

- MoP to specify Long-term trajectory of RPO in consultation with MNRE
- SERCs to specify Solar RPO – reaches 8% by Mar 22 (excluding Hydro) or as notified by CG
- Discoms to compulsorily procure Waste-to-Energy in State proportionately

Co-gen Clarified
- Co-generation from fossil-fuel will not be entitled as RE

REC Mechanism
- Promote REC mechanism for transfer of RE power from RE rich States to others.
- Use REC multiplier for **technology” and vintage”**
Open Access Segregation

Spatial Division
- Interstate open access
- Intrastate open access

Temporal Division
- Within state boundaries
 - SERCs Regulations
- Contingency STOA

Long Term
- Bilateral Advance STOA
- Bilateral FCFS STOA
- DAM (Co)

Medium Term
- > 7 years
- 3 months – 3 years

Intraday – 3 months
- Intraday

Nodal agency: CTU

Transmission availability:
- Advance booking
- First cum first served
- Collective transaction
- Availability of transmission capacity due to inherent design margin, variation in power flow and in-built spare capacity.

Regional Entities
- Among states or regional entities
- CERC Regulations
- NLDCs (Collective Transaction)
- Nodal Agency: RLDCs (Bilateral Transactions)

Within state boundaries
- SERCs Regulations
Inter-State Open Access Regulatory Framework

- Specifies roles of different agencies: system operators, CTU & Transmission licensees and others
- Specifies Timelines
- Provides for congestion management: Setting relative priorities
- Separate procedures for Day-Ahead Market (collective transactions) and OTC transactions on inherent margins

CERC (Open Access Regulations) 2008
- Last Amendment: 2015

CERC (Grant of connectivity, Long Term Access and Medium Term Open Access) in inter-state transmission Regulation, 2009
- Nodal agency for grant of Long and Medium access: CTU
- Defines criteria for grant of access and application procedure for medium and long term access

Procedure for Scheduling STOA in Interstate Transmission (Collective Transaction) (Bilateral Transaction)
- Collective Transaction: Application procedure, treatment of losses, congestion management at PXs
- Bilateral Transaction:
 - Procedure for Advance Scheduling/FCFS/Day-Ahead Bilateral/Contingency Transaction
Open Access in Inter-State Transmission

- Regulation Implemented w.e.f. 6-May-2004, revised Regulations w.e.f 1st April 2008 and amended in May 2009. Last amended in 2015

- **Transmission Capacity Reservation Categories**
 - Monthly bilateral
 - Advance /FCFS
 - Day ahead bilateral
 - Collective Transactions through Power Exchange
 - Intra day bilateral

- **Nodal Agency**
 - Bilateral: RLDCs & Collective: NLDC

- **Transmission Charges moved from “Contract Path” to “Point of Connection” for Collective/Bilateral**

- **Other Commercial Issues**
 - Handing deviations from schedule
 - Handing reactive energy supply/drawl
 - Payment security
 - Collection and disbursement of charges
Inter-State Open Access – basic framework

Nature of Contract
- Long Term
- Medium Term
- Short Term
- Power Exchange

Tariff Structure
- Two Part Tariff
- Either Two part or Single Tariff
- Single Tariff

Nodal Agency
- POWERGRID for Inter state & STUs for Intra State
- Buyer RLDC for Inter State & SLDCs for Intra State
- NLDC for “Day Ahead Market” & RLDCs for “Term Ahead Market”
Criteria for allowing access

- **Long-Term Access**: based on transmission planning criteria stipulated in the Indian Electricity Grid Code.

- **Medium & Short Term Access**: subject to availability of transmission capacity due to inherent design margin, margin available due to variation in power flow and margin available due to in-built spare capacity.

- Allotment priority of long term customers higher than that of Medium term & Short term customers.
STRUCTURE & STATUS OF SHORT TERM POWER MARKET
India Power Sector | Present Market Segments

Long Term

- Up to 25 years
 - Long-term Power Purchase Agreements (PPA)
 - 89.7%

Short Term

- OTC: Intraday to 1 year
 - Over the Counter Bilateral Trade Agreements (OTC) Effected by Licensed traders
 - 4.8%

- Exchanges: Intraday – 11 days
 - Exchanges (Only up to 11 days)
 - Day Ahead Contingency
 - Daily
 - Weekly
 - Day Ahead Market
 - 3.5%

- Real Time
 - Deviation settlement/ Unscheduled Interchange
 - 2.0%

1,157,938 MU

Short Term Power market is at ~10%, Power Exchange volume in the segment have been growing significantly

All values for FY17

Source: CERC MMC Report
Share of Short Term Market in Total Generation

- Short term market grew at a rate with a **CAGR of 9%** (FY-10 to FY 17).
- Power Exchanges witnessed growth at a **CAGR of 28%** (FY-10 to FY 17).

Source: CERC MMC Reports
SHORT TERM MARKET PRACTICES
Discom’s Options For Power Procurement

<table>
<thead>
<tr>
<th>Duration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-term</td>
<td>• 25-year PPA - Tariff on cost-plus or competitive bid</td>
</tr>
</tbody>
</table>
| **Medium Term** | • 3 Month- 3 Years
 • Tariff covers : Fixed Cost + Variable Cost+ Mark Up (< long term) |
| **Short Term (OTC)** | • Intraday- 3 Months to be procured through competitive bidding only
 • Single tariff covering Tariff covers Fixed Cost+ |
| **Day-Ahead Market** | • Highly liquid and transparent marketplace
 • More accurate load management |
| **Intra-day** | • Last-minute adjustments (Gate closure 4 hours)
 • Less liquid |
IEX Market Segments

Day-Ahead Market
- Delivery for next day
- Price discovery: Closed, Double-sided Auction

since June, 08

Intraday Market & Day-Ahead Contingency
- Intraday: For Delivery within the same day
- Day Ahead Contingency: Another window for next day
- Gate closure: 3 hours

Round the clock since Jul’15

Term-Ahead Contracts
- For delivery up to 11 days
- Daily Contracts, Weekly Contracts

since Sep’09

Renewable Energy Certificates
- Green Attributes as Certificates
- Sellers: RE generators not under feed in tariffs
- Buyers: Obligated entities; 1MWh equivalent to 1 REC

since Feb’11

Energy Saving Certificates
- 1 ESCert = 1 mtoe (metric Tonne of Oil Equivalent)
- Trading Session on every Tuesday of the Week
- Trading time 1300 hrs to 1500 hrs

since 27th Sept’17
Monthly Average Market Clearing Price (Rs/kWh)

Data as on 30th Sept 2017

Avg. MCP FY15-16: Rs 2.73/kWh
Avg. MCP FY16-17: Rs 2.42/kWh
Avg. MCP FY17-18: Rs 3.00/kWh
Price Comparison of a typical day

Winter: 18/12/2016 | Summer: 15/04/2017
Price and Volume: Bilateral vs. IEX DAM

Prices at the Exchange always remained lower than Bilateral Contracts.

Source: CERC MMC Reports, Data as on 31st Mar’ 2017
High Liquidity in Volume at IEX
(Avg. Hourly Volume in MW)

Data as on 31st Mar’ 2017
Power Situation in the Country

<table>
<thead>
<tr>
<th>Year</th>
<th>Installed Capacity (at the end of FY) (MW)</th>
<th>Peak Met (MW)</th>
<th>Energy Available (Excluding RE Gen.) (MU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-12</td>
<td>1,99,877</td>
<td>116,191</td>
<td>857,886</td>
</tr>
<tr>
<td>2012-13</td>
<td>2,23,344</td>
<td>123,294</td>
<td>911,209</td>
</tr>
<tr>
<td>2013-14</td>
<td>2,43,029</td>
<td>129,815</td>
<td>959,829</td>
</tr>
<tr>
<td>2014-15</td>
<td>2,67,367</td>
<td>141,160</td>
<td>1,030,785</td>
</tr>
<tr>
<td>2015-16</td>
<td>2,98,060</td>
<td>1,48,463</td>
<td>1,090,713</td>
</tr>
<tr>
<td>2016-17</td>
<td>3,26,848</td>
<td>1,56,934</td>
<td>1,135,332</td>
</tr>
</tbody>
</table>

- During the last 5 years, **capacity has increased at a CAGR of 10%** i.e. from 199 GW to 327 GW, **peak demand met increased at a CAGR of only 6.2%** and energy supply has grown at **5.8% CAGR**

Source: CEA
Installed Capacity & Generation (FY 2016-17)

<table>
<thead>
<tr>
<th>Category</th>
<th>Installed Capacity (MW)</th>
<th>PLF</th>
<th>Generation (BUs)</th>
<th>Feasible PLF</th>
<th>Possible Generation (BUs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>192,163</td>
<td>60%</td>
<td>944</td>
<td>80%</td>
<td>1,347</td>
</tr>
<tr>
<td>Gas</td>
<td>25,329</td>
<td>22%</td>
<td>49</td>
<td>80%</td>
<td>178</td>
</tr>
<tr>
<td>Diesel</td>
<td>837</td>
<td>3.5%</td>
<td>0.26</td>
<td>5%</td>
<td>0.4</td>
</tr>
<tr>
<td>Hydro</td>
<td>44,478</td>
<td>33%</td>
<td>122</td>
<td>33%</td>
<td>129</td>
</tr>
<tr>
<td>Nuclear</td>
<td>6,780</td>
<td>74%</td>
<td>38</td>
<td>80%</td>
<td>48</td>
</tr>
<tr>
<td>RE</td>
<td>57,260</td>
<td>16%</td>
<td>81</td>
<td>18%</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>326,848</td>
<td>16%</td>
<td>1,236</td>
<td>18%</td>
<td>1,791</td>
</tr>
</tbody>
</table>

- Present installed capacity is enough to meet the demand of next 5 years at a growth rate of 6%
- Further capacity addition of 70,000 MW of conventional power and more than 1,00,000 MW of Renewable power expected during 13th Plan

Source: CEA
Ensuring ideal mix of long term and short term power purchase arrangements to manage fixed cost and manage availability of supply

On a day to day basis- managing demand of the area by utilizing cheaper short term sources by replacing power from high variable cost plants and ensuring MERIT order based dispatch
1. SMART Procurement

- Under long term & medium term PPA: two part tariff
 - **Capacity charges (commitment charges):** paid irrespective of whether discom purchase power from these plants or not
 - **Energy charges:** Paid corresponding to the number of units of power purchased from that particular plant

- Discoms can replace costlier long term power by procurement from IEX, if,
 - Energy charge of power plant is greater than IEX rates
 - During night hours prices at IEX are further low and savings can be enhanced

- Discoms can replace ISGS first, keeping import constraint in consideration

- Discoms can continue paying fixed charge to Long Term PPAs and substitute where energy charge is higher than IEX price
Merit order dispatch schedule to be prepared based on Variable cost and considering Exchange Prices

<table>
<thead>
<tr>
<th>Capacity Tied up by Discom</th>
<th>Long Term Contracts</th>
<th>Bilateral Contracts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPA I Variable Cost</td>
<td>Contract 1 I 4.70</td>
</tr>
<tr>
<td></td>
<td>PPA 1 I 3.70</td>
<td>Contract 2 I 3.50</td>
</tr>
<tr>
<td></td>
<td>PPA 2 I 4.06</td>
<td>Contract 3 I 2.10</td>
</tr>
<tr>
<td></td>
<td>PPA 3 I 3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPA 4 I 1.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPA 5 I 2.00</td>
<td></td>
</tr>
</tbody>
</table>

Must Run Plants
(includes all hydro, nuclear or other ‘take or pay’ type contractual plants)

PPA

- **IEX Price**: 2.45
Merit order dispatch schedule to be prepared based on Variable cost and considering Exchange Prices

- Contract 1: 4.70
- PPA 2: 4.06
- PPA 1: 3.70
- Contract 2: 3.50
- PPA 3: 3.00
- IEX Price: 2.45
- Contract 3: 2.10
- PPA 5: 2.00
- PPA 4: 1.99

Must Run Plants (includes all hydro, nuclear or other ‘take or pay’ type contractual plants)

To be dispatched in this Order based on Energy Demand of the Discom

Increasing Variable Cost
<table>
<thead>
<tr>
<th>Avl Gen in MW</th>
<th>Gen 1: 100</th>
<th>Gen 2: 80</th>
<th>Gen 3: 120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Possible Backdown/Surrender (MW)</td>
<td>20</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>Variable cost</td>
<td>Rs 1/unit</td>
<td>Rs 3/unit</td>
<td>Rs 4/unit</td>
</tr>
<tr>
<td>Replacement cost/Exchange Bid</td>
<td>Rs 0.5/unit</td>
<td>Rs 2.5/unit</td>
<td>Rs 3.5/unit</td>
</tr>
<tr>
<td>Exchange Price</td>
<td>Rs 2.1/unit</td>
<td>✓ 5MW</td>
<td>✓ 25 MW</td>
</tr>
<tr>
<td></td>
<td>Rs 2.6/unit</td>
<td>✓ 25 MW</td>
<td></td>
</tr>
</tbody>
</table>
SMART Procurement

- Assess Generation availability and Demand Forecast for next day (15 min block)
 - Generation data for Long Term (LT) | Medium Term (MT) | Short Term (ST)
 - Calculate Surplus and Shortage to prepare “Regular Bid”

- Prepare schedule with maximum back down possible for LT & MT
 - For every plant identify maximum back down possible considering all constraints
 - Technical | Must Run status | Contractual | Transmission (Intra / Inter-state)
 - Give technical minimum schedule to these plants and identify “Replacement Bid” quantum

- Submit Bid at Exchange (1000 Hrs-1200 hrs)
 - Regular Bid: For Regular Shortage/Surplus depending on the demand and Generation cost
 - Replacement Bid: Price sensitive bids (based on Variable cost) for every plant
 - Two Bid Options
 - Single Bid: For every 15 min time block separately. May lead to non uniform back down schedule
 - Block Bid: All or none principle for clubbed time blocks. Will ensure uniform back down schedule

- Post IEX result- finalize schedule (after 1500 Hrs)
 - If Replacement bid not selected: Revise the schedule from the plants whose bid is not selected
 - If Replacement bid selected: No change and retain the earlier schedule (max possible back down)
Timeline for Bidding and Backdown

IEX Bidding

D - 1

DAM Biding period

Results declared

00 10 AM 12 PM 3 PM

If Bid Selected
No Need for giving Requisition

If Bid Not Selected
Requisition can be given one hour before Delivery time

ISGS Scheduling

Declared Capacity

Requisition for Scheduling

00 9 AM 3 PM

One hour before delivery
Merit Order

<table>
<thead>
<tr>
<th>Power Plant</th>
<th>Variable Cost (Rs/kWh)</th>
<th>IEX Price (Rs/kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAWAS LF/RF</td>
<td>7.46/4.51</td>
<td></td>
</tr>
<tr>
<td>GANDHAR LF</td>
<td>4.49</td>
<td></td>
</tr>
<tr>
<td>MAUDA (MSTPS-II)</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td>MAUDA (MSTPS-IV)</td>
<td>2.87</td>
<td></td>
</tr>
<tr>
<td>NTPC RSTPS 1&2</td>
<td>2.42</td>
<td></td>
</tr>
<tr>
<td>KAWAS NAPM/APM</td>
<td>2.05/1.83</td>
<td></td>
</tr>
<tr>
<td>GANDHAR NAPM/APM</td>
<td>2.04/1.77</td>
<td>RTC: Rs 2.23/kWh (July’17)</td>
</tr>
<tr>
<td>VSTPS-STG-I</td>
<td>1.51</td>
<td></td>
</tr>
<tr>
<td>VSTPS-STG-II</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>VSTPS-V</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>VSTPS-STG-III</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>VSTPS-STG-IV</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>SIPAT-II</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>SIPAT I</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>KSTPS</td>
<td>1.30</td>
<td></td>
</tr>
</tbody>
</table>

Source: www.vidyutmode.in

*Landed price including POC loss and POC charges as below
POC Loss: 2.52% & POC Charges : Rs 0.27/kWh*
CASE STUDY: Cost Optimization by Bihar

- Bihar has initiated the process of Cost Optimization
- The costlier power from Barh & Dadri stations is replaced by the cheaper power from IEX.
- The Energy Charges of these power plants are greater than the IEX rates.
- **Bihar has made a saving of over 11 crores in 21 days**

Due to low prices at the Exchange there was further potential to increase savings
Bihar Savings

<table>
<thead>
<tr>
<th>Delivery Day</th>
<th>Savings (in Rs. Lacs)</th>
<th>Further Savings (in Rs. Lacs)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6th June'15</td>
<td>19</td>
<td>83</td>
<td>102</td>
</tr>
<tr>
<td>7th June'15</td>
<td>55</td>
<td>38</td>
<td>93</td>
</tr>
<tr>
<td>8th June'15</td>
<td>51</td>
<td>17</td>
<td>68</td>
</tr>
<tr>
<td>9th June'15</td>
<td>31</td>
<td>43</td>
<td>74</td>
</tr>
<tr>
<td>10th June'15</td>
<td>37</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>11th June'15</td>
<td>60</td>
<td>9</td>
<td>69</td>
</tr>
<tr>
<td>12th June'15</td>
<td>46</td>
<td>15</td>
<td>61</td>
</tr>
<tr>
<td>13th June'15</td>
<td>75</td>
<td>30</td>
<td>105</td>
</tr>
<tr>
<td>14th June'15</td>
<td>12</td>
<td>80</td>
<td>92</td>
</tr>
<tr>
<td>15th June'15</td>
<td>18</td>
<td>70</td>
<td>88</td>
</tr>
<tr>
<td>16th June'15</td>
<td>31</td>
<td>53</td>
<td>83</td>
</tr>
<tr>
<td>17th June'15</td>
<td>181</td>
<td>0</td>
<td>181</td>
</tr>
<tr>
<td>18th June'15</td>
<td>71</td>
<td>20</td>
<td>92</td>
</tr>
<tr>
<td>19th June'15</td>
<td>102</td>
<td>0</td>
<td>102</td>
</tr>
<tr>
<td>20th June'15</td>
<td>103</td>
<td>8</td>
<td>111</td>
</tr>
<tr>
<td>21st June'15</td>
<td>78</td>
<td>30</td>
<td>108</td>
</tr>
<tr>
<td>22nd June'15</td>
<td>29</td>
<td>67</td>
<td>96</td>
</tr>
<tr>
<td>TOTAL</td>
<td>997</td>
<td>487</td>
<td>1,274</td>
</tr>
</tbody>
</table>

A min of 200 MW power purchase is considered in each block with replacement of Dadri & Barh power
Key factors considered for Smart Power Procurement

- **Demand Forecast** - Forecast on 15 min time block basis
- **Generation Data**
 - Plant wise DC /Entitlement of various ISGS and SGS on Day ahead basis
 - Variable cost of all generators (ISGS, SGS, Bilateral etc)
 - Applicable losses and charges Import/Export (banking etc)
 - Generator outage period
- **Optimization potential assessment**
 - Must run plants
 - Back down potential in each plant considering
 - Technical minimum
 - Contractual minimum
 - Network constraints
 - Ramp-up/Ramp down
Smart Procurement: Saving Potential

<table>
<thead>
<tr>
<th>State</th>
<th>DISCOM losses (in INR cr, FY17E)</th>
<th>Smart Procurement savings (in INR cr, FY17)</th>
<th>Average power to be bought (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uttar P</td>
<td>5012</td>
<td>800</td>
<td>1350</td>
</tr>
<tr>
<td>Tamil Nadu</td>
<td>2224</td>
<td>490</td>
<td>660</td>
</tr>
<tr>
<td>Punjab</td>
<td>1681</td>
<td>190</td>
<td>400</td>
</tr>
<tr>
<td>Haryana</td>
<td>2911</td>
<td>270</td>
<td>400</td>
</tr>
<tr>
<td>Andhra P.</td>
<td>1032</td>
<td>170</td>
<td>350</td>
</tr>
<tr>
<td>Telangana</td>
<td>4380</td>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>Maharashtra</td>
<td>2639</td>
<td>110</td>
<td>390</td>
</tr>
<tr>
<td>Rajasthan</td>
<td>2195</td>
<td>80</td>
<td>190</td>
</tr>
<tr>
<td>Bihar</td>
<td>2275</td>
<td>60</td>
<td>125</td>
</tr>
<tr>
<td>MP</td>
<td>2278</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>Other states**</td>
<td>-1955</td>
<td>820</td>
<td>1450</td>
</tr>
<tr>
<td>Total</td>
<td>25000</td>
<td>3200</td>
<td>5700</td>
</tr>
</tbody>
</table>

Rs. 3200 crore from Smart Procurement
2. **Smart Contracting**

i. Discoms should tie-up PPA only to manage their base demand

ii. Many Discoms have tied PPAs to meet their peak demand as well. The Discoms have to pay the capacity charge for this quantum even in the off peak time.

iii. So for optimum utilisation, Long Term PPA should be only for base demand and remaining energy (for peak and variations in forecast) should be bought through other available market options.
Monthly Demand Curve for Delhi

Month wise Delhi Demand (MW)

Base Demand
Monthly Demand Curve for Punjab

Month wise Punjab Demand (MW)

Base Demand

8500 MW

5500 MW

11,500 MW

Demand (MW)

April'16 May'16 June'16 July'16 Aug'16 Sep'16 Oct'16 Nov'16 Dec'16 Jan'17 Feb'17 Mar'17

0 2000 4000 6000 8000 10000 12000
Monthly Demand Curve for Haryana

Monthly Peak - Source: CEA
Meeting Shortages/Surplus through Short Term Market
Maximizing efficiency – Ideal Scenario (Monthly)

Surpluses/Deficits - Balance physical supply and demand

Short Term/Exchange for peak load

PPA (Base Load Contract)
Meeting Shortages/Surplus through STM
Maximizing efficiency – Ideal Scenario (Hourly)

Surpluses/Deficits - Balance physical supply and demand

[Diagram showing Base (MW), Short Term (MW), and Load (MW) over 24 hours, with PPA (Base Load Contract) highlighted.]
Methodology 2 - Long term PPA for 80% of total energy demand

- Draw load curve for a state (indicating demand met in MW for each hour of the year),
- Estimate the demand met in MW that corresponds to meeting 80% of total energy demand over the year
- Estimate total capacity required to meet baseload demand by applying an average Plant Load Factor (PLF) to the baseload demand met (in MW).
Key considerations – for long-term

• Demand projections for next few years (say 3)
• Extent of Renewable growth
• Solar Rooftop potential
• Hydro potential in the State
Procurement Strategy for Renewable Energy

• Purchase of bundled green power to be benchmarked with market determined prices of power & REC

• Discom can purchase Power @ 2.41 (IEX Avg. Price for FY17)
 REC @ 1.00
 3.41

• Deficit state should procure renewable power only if the power is available at Price less than Rs 3.41/kWh.
• Flexibility in procurement as Discom can purchase power when they actually need.

Flexible Purchase at most competitive price
Power Exchange across Globe:
Enormous potential to grow for India compared to international benchmarks

INDIA TRADES ~3% OF ITS OVERALL CONSUMPTION ON EXCHANGE MARKETS COMPARED TO 15-91% GLOBALLY

VOLUME IN BU (Billion Units)

GLOBAL BENCHMARKS ON PENETRATION OF ST MARKETS
Exchange traded (% total consumption)

Indian markets still at a nascent stage and high potential for growth for the Indian Power Exchanges
Suggestions for development of Power Market in India

Policy push for promoting short term market

• Prices discovered on Short term market, particularly Exchanges is very competitive, therefore government should also take policy initiatives to develop short term market
• It will also help Discoms to manage power demand efficiently and at competitive rates

Long term PPAs by Discoms should be limited to 10-12 years

• Discoms in past contracted long term power on the basis of peak demand, as a result, many of the states landed up having surplus capacity during 6-7 months in a year, paying capacity charge without utilizing the power.
• PPAs should not be more than 10-12 years to give comfort to the bankers.
• PPAs which expire after 25 year period should not be renewed and be allowed to sell power in market for market development

Power Purchase cost optimisation by Discoms

• Follow merit order dispatch
 • Discom to ensure that the principle of economic dispatch/ merit order dispatch (National Tariff Policy), is followed while preparing day-ahead power procurement plan. The merit order should include energy charge of all available power plants, power exchange prices and prices of other short term arrangements
Base load by Long term and variations through Short Term Market

- Discoms should sign PPA for the base demand only
- Seasonal variations and peak should be arranged through the short term market.
- This will help Discoms to limit over contracting the PPAs and save on the capacity charge as the peak and seasonal quantum is not required throughout the year.

Gate closure reduction in Intra Day Markets

- As of now, gate closure in international markets for Exchange traded products is 1 hour, whereas it is 4 hours in India
- This needs to be reduced to allow more liquidity and better load management for consumers and discoms.

Phasing out of Old Plants

- Thermal power plants over 25 years old should be phased out. At present this capacity is over 40,000 MW
- This can be now done as we have surplus generation capacity

Open access registry

- An Integrated IT based system, with access to all the OA Participants, Trade Intermediaries and National/Regional/State LDCs will help reduce data closure time in TAM products and also streamline issues related to non issuance or delay in NoC.

RPO Compliance

- Key States like Delhi, Bihar WB, UP, Haryana etc. remain RPO non-compliant
- SERCs should strictly enforce RPO and not allow any relaxations to the obligated entities.
Thank You
www.iexindia.com

Follow us @IEXLtd

Use IEX Mobile Application to track prices

Register for Daily SMS alerts

Register for IEX Monthly Bulletin