Title: L^p -asymptotic behaviour of solutions to certain evolution equations

Abstract: In this talk, we investigate the long-time behaviour of solutions to evolution equations in different settings. We first prove a general result for homogeneous groups (e.g., the Heisenberg group), showing that for any complex Borel measure μ and a suitable approximate identity $\{\psi_t\}_{t>0}$, the normalized difference

$$\|\psi_t\|_{L^p(G)}^{-1} \|\mu * \psi_t - \mu(G)\psi_t\|_{L^p(G)}$$

converges to zero as $t \to \infty$, for all $p \in [1, \infty]$. This provides a unified approach for describing the L^p -asymptotic properties of solutions to many evolution equations across a variety of spaces.

Next, we focus on Riemannian symmetric spaces of noncompact type X = G/K, where for all left K-invariant functions $f \in L^1(X)$, the normalized difference

$$||h_t||_{L^p(X)}^{-1}||f*h_t-M_p(f)h_t||_{L^p(X)}$$

converges to zero as $t \to \infty$, where h_t is the heat kernel on X. We further extend this result to fractional heat kernels h_t^{α} with $\alpha \in (0,1)$.

Finally, we present our recent work on similar asymptotic phenomena for non-local evolution equations on Riemannian symmetric spaces of noncompact type.