Hyperbolicity properties of extensions of free groups

Pritam Ghosh

Consider a free group of finite rank \mathbb{F} and the natural short exact sequence $1 \to \operatorname{Inn}(\mathbb{F}) \to \operatorname{Aut}(\mathbb{F}) \to \operatorname{Out}(\mathbb{F}) \to 1$. Given a finitely generated subgroup $Q < \operatorname{Out}(\mathbb{F})$, we get an induced short exact sequence $1 \to \mathbb{F} \to \Gamma_Q \to Q \to 1$ by identifying \mathbb{F} with $\operatorname{Inn}(\mathbb{F})$. We are interested in understanding what conditions can we put on Q so that Γ_Q (called the extension of \mathbb{F} by Q) has a nice geometric structure (specifically - hyperbolic or relatively hyperbolic group structure).

- 1. When $Q \cong \mathbb{Z}$: Γ_Q is hyperbolic $\Leftrightarrow \Gamma_Q$ does not have a $\mathbb{Z} \oplus \mathbb{Z}$ subgroup (Bestvina-Feighn, Brinkmann) and Γ_Q is relatively hyperbolic \Leftrightarrow the generator of Q is *exponentially growing* element of $Out(\mathbb{F})$ (— , Hagen).
- 2. When $\langle \phi \rangle \cong \mathbb{Z} \cong \langle \psi \rangle$ are *atoroidal* with their lamination sets disjoint, then sufficiently high powers of ϕ, ψ generate a free group of rank two Q, so that Γ_Q is hyperbolic (— Gultepe). Converse is also holds (—).
- 3. When $\langle \phi \rangle \cong \mathbb{Z} \cong \langle \psi \rangle$ are exponentially growing, a slightly technical notion of relative independence ensures that we have a free group of rank two Qgenerated by sufficiently high powers of ϕ, ψ , so that Γ_Q is a relatively hyperbolic group. Converse also holds (— - Gultepe).

We will try to keep the technicalities to a bare minimum and understand the key ideas through examples and pictures.