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These notes give an overview of the lectures. I have also listed several results which I
probably don’t have time to discuss. In the lectures I plan to explain some of the basic
proof ideas and methods. Below I shall give the most essential preliminaries on which
the lectures will be based. Basic general back-ground material can be found in Sections
1, 6 of [F3], Sections 1, 4, 8, 12 of [M4], Sections 2, 3 of [M5], Sections 1-3, 8 of [W2].
Those books also contain proofs of many results mentioned below which had appeared
prior 2015.

1. Preliminaries on Hausdorff dimension, energy integrals and the
Fourier transform

First I give a quick review of the Hausdorff dimension and its relations to energy-
integrals and the Fourier transform. Most of the details can be found in [M4] and [M5].

For A ⊂ Rn, let M(A) be the set of Borel measures µ such that 0 < µ(A) < ∞ and µ
has compact support sptµ ⊂ A.
The Fourier transform of µ ∈ M(Rn) is defined by

µ̂(x) =

∫
e−2πix·y dµy, x ∈ Rn.

Many of the basic formulas of classical Fourier analysis extend to measures, with appro-
priate assumptions, see [M5] and [W2].

The s-dimensional Hausdorff measure Hs, s ≥ 0, is defined by

Hs(A) = lim
δ→0

Hs
δ(A), A ⊂ Rn,

where, for 0 < δ ≤ ∞,

Hs
δ(A) = inf{

∑
j

d(Ej)
s : A ⊂

⋃
j

Ej, d(Ej) < δ}.

Here d(E) denotes the diameter of the set E.
Then Hn is a constant multiple of the Lebesgue measure Ln on Rn.
The Hausdorff dimension of A ⊂ Rn is

dimA = inf{s : Hs(A) = 0} = sup{s : Hs(A) = ∞}.
The following is a useful tool for lower bounds for the Hausdorff dimension, B(x, r) is

the closed ball with centre x and radius r:
1
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Theorem 1.1 (Frostman’s lemma). Let 0 ≤ s ≤ n. For a Borel set A ⊂ Rn,Hs(A) > 0
if and only there is µ ∈ M(A) such that

(1.1) µ(B(x, r)) ≤ rs for all x ∈ Rn, r > 0.

In particular,

dimA = sup{s : there is µ ∈ M(A) such that (1.1) holds}.

Such measures µ are often called Frostman measures.
The s-energy, s > 0, of µ ∈ M(Rn) is

Is(µ) =

∫∫
|x− y|−s dµy dµx =

∫
ks ∗ µ dµ,

where ks is the Riesz kernel :

ks(x) = |x|−s, x ∈ Rn.

Integration of Frostman’s lemma, that is using the simple formula∫
|x− y|−s dµy = s

∫ ∞

0

r−s−1µ(B(x, r)) dr,

gives that if µ satisfies (1.1), then It(µ) < ∞ for 0 < t < s. On the other hand, if
Is(µ) < ∞, then a restriction of µ to a set of large µ measure satisfies (1.1). So these
conditions are very close to each other and we have

(1.2) dimA = sup{s : there is µ ∈ M(A) such that Is(µ) < ∞}.

The s-energy of µ ∈ M(Rn) can be written in terms of the Fourier transform:

Is(µ) = c(n, s)

∫
|µ̂(x)|2|x|s−n dx.

This follows by Plancherel’s formula and the fact that the distributional Fourier transform
of ks is c(n, s)kn−s:

Is(µ) =

∫
ks ∗ µ dµ = c(n, s)

∫
kn−s|µ̂|2.

Thus we have

(1.3) dimA = sup{s < n : ∃µ ∈ M(A) such that

∫
|µ̂(x)|2|x|s−n dx < ∞}.

Notice that if Is(µ) < ∞, then |µ̂(x)|2 < |x|−s for most x with large norm. However,
this need not hold for all x with large norm.

The following classical theorem of Davies, see [F3, Theorem 5.4] and [F, Corollary
2.10.48], often reduces the study of general Borel sets to sets with positive and finite
Hausdorff measure:

Theorem 1.2. If A ⊂ Rn is a Borel set with Hs(A) = ∞, then A contains a compact set
C with 0 < Hs(C) < ∞.
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If A ⊂ Rn is Hs measurable with Hs(A) < ∞, then (see [M4, Theorem 6.2]) for Hs

almost all xε ∈ A,

2−s ≤ lim sup
r→0

Hs(A ∩B(x, r)) ≤ 1.

In general, lim sup cannot be replaced lim inf. We shall say that A is Ahlfors-David regular
if for some positive numbers s and C,

rs/C ≤ Hs(A ∩B(x, r)) ≤ Crs for x ∈ A, 0 < r < d(A).

The following well-known facts are often useful, we shall always identify absolutely
continuous measures with their Radon-Nikodym derivatives:

Proposition 1.3. Let µ ∈ M(Rn).

(1) If µ̂ ∈ L2(Rn), then µ ∈ L2(Rn).
(2) If µ̂ ∈ L1(Rn), then µ is a continuous function.

Proposition 1.4. Let µ, µj ∈ M(Rn), j = 1, 2, . . . . If p > 1 and µj ∈ Lp(Rn) with
∥µj∥p ≤ C for all j and µj → µ weakly, then µ ∈ Lp(Rn) with ∥µ∥p ≤ C.

This fails for p = 1.
If µ ∈ M(Rn), the smooth functions ϕϵ ∗ µ, ϵ > 0, converge weakly to µ, where ϕϵ is

smooth with support in B(0, ϵ) and
∫
ϕϵ = 1. This with the aid of Proposition 1.4 often

allows to reduce the arguments to smooth functions instead of measures.
We let O(n) be the orthogonal group of Rn and θn its Haar measure.
We denote by f♯µ the push-forward of a measure µ by a mapping f ; f♯µ(A) = µ(f−1(A)).

By µ ≪ ν we mean that µ is absolutely continuous with respect to ν.

2. Hausdorff dimension and projections

We shall now discuss the question: how do orthogonal projections onto lines, or m-
planes, affect the Hausdorff dimension? Set

Pe(x) = e · x, x ∈ Rn, e ∈ Sn−1.

The first two items of the following theorem are the classical Marstrand’s projection
theorem from 1954, [M]. The third was proved by Falconer and O’Neil [FO] in 1999 and
by Peres and Schlag [PS] in 2000:

Theorem 2.1. Let A ⊂ Rn be a Borel set.

(1) If dimA ≤ 1, then

dimPe(A) = dimA for almost all e ∈ Sn−1.

(2) If dimA > 1, then

L1(Pe(A)) > 0 for almost all e ∈ Sn−1.

(3) If dimA > 2, then Pe(A) has non-empty interior for almost all e ∈ Sn−1.

Proof. For µ ∈ M(A) let µe ∈ M(Pe(A)) be the push-forward of µ under Pe: µe(B) =
µ(P−1

e (B)).
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To prove (1) let 0 < s < dimA and choose, using (1.2), µ ∈ M(A) such that Is(µ) < ∞.
Then ∫

Sn−1

Is(µe) de =

∫
Sn−1

∫∫
|e · (x− y)|−s dµx dµy de

=

∫∫∫
Sn−1

|e · ( x−y
|x−y|)|

−s de|x− y|−s dµx dµy = c(s)Is(µ) < ∞,

where for v ∈ Sn−1, c(s) =
∫
Sn−1 |e · v|−s de < ∞ as s < 1. Referring again to (1.2) we see

that dimPe(A) ≥ s for almost all e ∈ Sn−1. By the arbitrariness of s, 0 < s < dimA, we
obtain dimPe(A) ≥ dimA for almost all e ∈ Sn−1. The opposite inequality follows from
the fact that the projections are Lipschitz mappings.

To prove (2) choose by (1.3) a measure µ ∈ M(A) such that
∫
|x|1−n|µ̂(x)|2 dx < ∞.

Directly from the definition of the Fourier transform we see that µ̂e(t) = µ̂(te) for t ∈
R, e ∈ Sn−1. Integrating in polar coordinates we obtain∫

Sn−1

∫ ∞

−∞
|µ̂e(t)|2 dt de = 2

∫
Sn−1

∫ ∞

0

|µ̂(te)|2 dt de = 2

∫
|x|1−n|µ̂(x)|2 dx < ∞.

Thus for almost all e ∈ Sn−1, µ̂e ∈ L2(R) which means that µe is absolutely continuous
with L2 density and hence L1(pe(A)) > 0.

For the proof of (3) one takes 2 < s < dimA and µ ∈ M(A) such that Is(µ) < ∞,
whence

∫
|x|s−n|µ̂(x)|2 dx < ∞. Then as above and by the Schwartz inequality∫

Sn−1

∫
|t|≥1

|µ̂e(t)| dt de = 2

∫
|x|≥1

|x|1−n|µ̂(x)| dx

≤ 2

∫
|x|≥1

|x|2−s−n| dx
∫
|x|≥1

|x|s−nµ̂(x)|2 dx < ∞

since 2− s− n < −n. Thus for almost all e ∈ Sn−1, µ̂e ∈ L1(R) which implies that µe is
absolutely continuous with continuous density. Hence Pe(A) has non-empty interior. □

Also part (2) can rather easily be proven without the Fourier transform, but I don’t
know any proof for (3) without it.

The conditions on dimA are necessary.
The higher dimensional analogue is also true. There G(n,m) is the Grassmannian

manifold of linear m-dimensional subspaces of Rn, almost all V ∈ G(n,m) refers to its
its orthogonally invariant Borel probability measure, and PV : Rn → V is the orthogonal
projcetion:

Theorem 2.2. Let A ⊂ Rn be a Borel set.

(1) If dimA ≤ m, then

dimPV (A) = dimA for almost all V ∈ G(n,m).

(2) If dimA > m, then

Hm(PV (A)) > 0 for almost all V ∈ G(n,m).

(3) If dimA > 2m, then PV (A) has non-empty interior for almost all V ∈ G(n,m).
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I don’t know if (3) is sharp when m ≥ 2.
How much more one can say about the size of the sets of exceptional lines. Kaufman

[Ka] proved in 1968 the first item of the following theorem, Falconer [F1] in 1982 the
second and Peres and Schlag [PS] in 2000 the third.

Theorem 2.3. Let A ⊂ Rn be a Borel set.

(1) If dimA ≤ 1, then

(2.1) dim{e ∈ Sn−1 : dimPe(A) < dimA} ≤ dimA.

(2) If dimA > 1, then

(2.2) dim{e ∈ Sn−1 : L1(Pe(A)) = 0} ≤ n− dimA.

(3) If dimA > 2, then

(2.3) dim{e ∈ Sn−1 : Int(Pe(A)) ̸= ∅} ≤ n+ 1− dimA.

The proofs are not too difficult modifications of those for Theorem 2.1. The higher
dimensional analogues can be found in [M5, Corollay 5.12]

The following result of Ren and Wang [RW] solved a conjecture of Oberlin. The proof
uses an argument of Orponen and Shmerkin [OS] to deduce this from the solution of
Furstenberg’s problem, see Section 5.

Theorem 2.4. Let A ⊂ R2 be a Borel set. Then for 0 ≤ u ≤ min{dimA, 1},
(2.4) dim{e ∈ S1 : dimPe(A) < u} ≤ max{2u− dimA, 0}.

The upper bound is sharp, as the constructions in [KM] show.
Analogues of Marstrand’s projection theorem have recently been proved for various

restricted families of projections. Let γ : [0, 1] → S2 be a curve with sufficient curvature
properties, that is, γ(θ), γ′(θ), γ′′(θ)) span R3 for all θ ∈ [0, 1], and let pθ be the projection
onto line spanned by γ(θ). A typical example is γ(θ) = 1√

2
(cos θ, sin θ, 1), but not γ(θ) =

1√
2
(cos θ, sin θ, 0) for which Theorem 2.5 clearly fails. The first part of the following

theorem is due to Käenmäki, Orponen and Venieri [KOV], Pramanik, Yang, and Zahl
[PYZ], Gan, Guth, and Maldague [GGM], and the second to Harris [H1]:

Theorem 2.5. Let A ⊂ R3 be a Borel set.

(1) If dimA ≤ 1, then

dim pθ(A) = dimA for almost all θ.

(2) If dimA > 1, then

H1(pθ(A)) > 0 for almost all θ.

The corresponding problem of the projections πθ onto the planes orthogonal to γ(θ)
was solved by Gan, Guo, Guth, Harris, Maldague and Wang in [GGGHMW]:

Theorem 2.6. Let A ⊂ R3 be a Borel set.

(1) If dimA ≤ 2, then

dim πθ(A) = dimA for almost all θ.
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(2) If dimA > 2, then

H2(πθ(A)) > 0 for almost all θ.

See [GGGHMW], [H2] and [H3] for many recent related results and references. The
proofs involve several powerful methods; good-bad decomposition of measures (good part
assings small measure to sets in a wave-packet decomposition of the space), decoupling
inequalities ( for a treatise on the decoupling theory, see Demeter’s book [D]) and high-
low methods (decomposing a function as a sum of a function with high frequencies and
a function with low frequencies). The papers [KOV] and [PYZ] use variants of Wolff’s
circular maximal function estimates.

In [H2] Harris proved quantitative Lp analogs of Theorem 2.5, with p = 6/5, and
Theorem 2.6, with p = 4/3, and showed that the latter yields an L4/3 inequality for
Kakeya maximal functions of certain restricted type.

Next, let

πt : R4 → R2, πt(x, y) = x+ ty, x, y ∈ R2, t ∈ R.
This family is connected with Besicovitch sets and the Kakeya conjecture in R3. The
following theorem is due to D. M. Oberlin [Ob1]:

Theorem 2.7. Let A ⊂ R4 be a Borel set.

(1) If dimA ≤ 3, then dim πt(A) ≥ dimA− 1 for almost all t ∈ R.
(2) If dimA > 3, then L2(πt(A)) > 0 for almost all t ∈ R.

For g ∈ O(n), define

Sg : R2n → Rn, Sg(x, y) = x− g(y).

Then Sg is essentially the orthogonal projection onto the n-plane {(x,−g−1(x)) : x ∈
Rn}.

The following theorem was proved in [M6]. A product set version will be applied to
general intersection is Section 4.

Theorem 2.8. Let A ⊂ R2n be a Borel set.

(1) If dimA > n+ 1, then Ln(Sg(A)) > 0 for almost all g ∈ O(n).
(2) If n ≤ dimA ≤ n+ 1, then dimSg(A) ≥ dimA− 1 for almost all g ∈ O(n).
(3) If n− 1 ≤ dimA ≤ n, then dimSg(A) ≥ n− 1 for almost all g ∈ O(n).
(4) If dimA ≤ n− 1, then dimSg(A) ≥ dimA for almost all g ∈ O(n).

The bounds in the last two theorems are sharp. The proofs use mainly Fourier transform
estimates and are much easier than those of Theorems 2.5 and 2.6.

For x ∈ Rn define the radial projection

πx : Rn \ {x} → Sn−1, πx(y) =
y − x

|y − x|
.

Then by standard proofs the statements of Marstrand’s projection theorem are valid for
almost all x ∈ Rn. Orponen proved in [O] the following sharp estimate for the exceptional
set of x ∈ Rn.
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Theorem 2.9. If µ and ν are Frostman measures of exponent s > n− 1 in Rn, then for
ν almost all y, the radial projection πy♯µ has an Lp density for some p = p(s) > 1.
Moreover, if A ⊂ Rn is a Borel set with dimA > n− 1, then

dim{x ∈ Rn : Hn−1({πx(A)) = 0}) ≤ 2(n− 1)− dimA.

The first statement is typical to all of the above theorems where positive measure is
concluded: they are obtained by Lp estimates, often with p = 2 but sometimes (as in
[H2]) only with some 1 < p < 2, for the push-forwards of Frostman measures or measures
with finite energy. This is essential for many applications

3. Hausdorff dimension and distance sets

The distance set of a Borel set A ⊂ Rn, n ≥ 2, is

D(A) = {|x− y| : x, y ∈ A}.
Falconer conjectured in [F2] that L1(A) > 0 if dimA > n/2, and he proved that this is

true if dimA > (n+ 1)/2. This conjecture is still open.
First, Falconer’s result follows immediately from the rather easy estimate

(3.1) µ× µ({(x, y) : r ≤ |x− y| ≤ r + δ}) ≲ Is(µ)r
s−1δ

if µ ∈ M(Bn(0, 1)), s ≥ (n + 1)/2, 0 < δ < r, because this implies that the distance
measure

δ(µ)(B) := µ× µ({(x, y) : |x− y| ∈ B}), B ⊂ R,
is absolutely continuous with L∞ density provided Is(µ) < ∞, s ≥ (n+ 1)/2.

By showing that δ(µ) is even a continuous function if Is(µ) < ∞, s > (n + 1)/2, we
proved with Sjölin in [MS]

Theorem 3.1. If A ⊂ Rn is a Borel set with dimA > (n+1)/2, then D(A) has non-empty
interior.

It is not known if for this the bound (n+ 1)/2 could be improved.
The bound (n + 1)/2 is sharp (at least for n = 2, 3) for the L∞ estimate (3.1), but

further progress follows by L2 estimates.
For µ ∈ M(Rn), set

σ(µ)(r) =

∫
Sn−1

|µ̂(rv)|2 dv.

I proved in [M2] that if ∫ ∞

1

σ(µ)(r)2rn−1 dr < ∞,

then δ(µ) ∈ L2(R). Then if Is(µ) < ∞ and s ≥ (n− 2)/2, ε > 0, Wolff proved in [W1] for
n = 2 and Erdoğan for n ≥ 3 that

(3.2) σ(µ)(r) ≲ r−s/2−(n−2)/4+ε, r > 1.

The combination of these two results gives that δ(µ) ∈ L2(R2) if Is(µ) < ∞, s > n/2+1/3,
which implies that L1(DA)) > 0 if dimA > n/2 + 1/3.
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For n = 2 the power s/2 in (3.2) is the best possible. In higher dimensions the best
exponent is not known but Du and Zhang [DZ] (see [Du] for some examples) proved the
estimate

(3.3) σ(µ)(r) ≲ r−(n−1)s/n+ε

when Is(µ) < ∞.
As above, this leads to

Theorem 3.2. If A ⊂ Rn is a Borel set with dimA > n/2 + 1/4 + 1/(8n − 4), then
L1(DA)) > 0.

When n = 2 the borderline 4/3 is the best possible to get δ(µ) ∈ L2(R2) by an example
of Guth, Iosevich, Ou and Wang, [GIOW]. These authors proved the best result so far in
the plane:

Theorem 3.3. If A ⊂ R2 is a Borel set with dimA > 5/4, then L1(DA)) > 0.

The proof uses Orponen’s radial projection estimates, recall Theorem 2.9, Liu’s formula
[L]:

(3.4)

∫ ∞

0

|f ∗ σt(x)|2t dt =
∫ ∞

0

|f ∗ σ̂r(x)|2r dr,

σt is the normalized length measure on the circle {x : |x| = t}, and decoupling.
In higher dimensions Du, Iosevich, Ou, Wang and Zhang [DIOWZ] proved, by a rather

similar method as that of [GIOW]

Theorem 3.4. If n is even and A ⊂ Rn is a Borel set with dimA > n/2 + 1/4, then
L1(DA)) > 0.

For odd integers n Theorem 3.2 is still the best known result.
Also estimates on the dimension of the distance sets have been studied extensively. The

main question in the plane is: if dimA = 1, how big must dimD(A) be? The best known
result is due to Shmerkin and Wang, see [SW].

Theorem 3.5. If A ⊂ R2 is a Borel set with dimA = 1, then dimD(A) ≥ (
√
5 − 1)/2

(the golden mean).

They also showed that if A ⊂ Rn is an Ahlfors-David regular Borel set with dimA =
n/2, then dimD(A) = 1. The paper [SW] gives an up-to-date survey of other related
results.

4. Plane sections and intersections

What can we say about the dimensions if we intersect a subset of Rn with (n − m)-
dimensional planes? We have the following result proved by Marstrand in the plane in
[M], in general dimensions it was proved in [M1]:

Theorem 4.1. Let m < s < n and let A ⊂ Rn be Hs measurable with 0 < Hs(A) < ∞.
Then

(1) for Hs almost all x ∈ A, dim(A∩(V +x)) = s−m for almost all V ∈ G(n, n−m),
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(2) for almost all V ∈ G(n, n−m),

Hm({x ∈ V ⊥ : dim(A ∩ (V + x)) = s−m}) > 0.

These statements are essentially equivalent.
Obviously this is stronger than the corresponding projection theorem 2.2(2). On the

other hand, we shall now see that quantitative projection theorems imply such section
theorems.

Let Pλ : Rn → Rm, λ ∈ Λ, be orthogonal projections, where Λ is a compact metric
space. Suppose that λ 7→ Pλx is continuous for every x ∈ Rn. Let also ω be a finite non-
zero Borel measure on Λ. These assumptions are just to guarantee that the measurability
of the various functions appearing in the proofs can easily be checked.

Theorem 4.2. Let s > m and p > 1. Suppose that Pλ♯µ ≪ Lm for ω almost all λ ∈ Λ
and that there exists a positive number C such that

(4.1)

∫∫
Pλ♯µ(u)

p dLmu dωλ < Cµ(Bn(0, 1))

whenever µ ∈ M(Bn(0, 1)) is such that µ(B(x, r)) ≤ rs for x ∈ Rn, r > 0.
If A ⊂ Rn is Hs measurable and 0 < Hs(A) < ∞, then for Hs × ω almost all (x, λ) ∈

A× Λ,

(4.2) dimP−1
λ {Pλx} ∩ A = s−m,

and for ω almost all λ ∈ Λ,

(4.3) Lm({u ∈ Rm : dimP−1
λ {u} ∩ A = s−m}) > 0.

This was proved in [M7]. It gives a general version of Theorem 4.1. It applies to many
restricted families of projections, discussed in Section 2, and the related plane sections.

Next we give a version of Theorem 4.2 for product sets and measures. It is used to prove
Theorem 4.4 on general intersections. Now Pλ : Rn × Rl → Rm, λ ∈ Λ, are orthogonal
projections.

Theorem 4.3. Let s, t > 0 with s+ t > m and p > 1. Suppose that Pλ♯(µ× ν) ≪ Lm for
ω almost all λ ∈ Λ and there exists a positive number C such that

(4.4)

∫∫
Pλ♯(µ× ν)(u)p dLmu dωλ < Cµ(Bn(0, 1))ν(Bl(0, 1))

whenever µ ∈ M(Bn(0, 1)), ν ∈ M(Bl(0, 1)) are such that µ(B(x, r)) ≤ rs for x ∈ Rn, r >
0, and ν(B(y, r)) ≤ rt for y ∈ Rl, r > 0.
If A ⊂ Rn is Hs measurable with 0 < Hs(A) < ∞ and B ⊂ Rl is Ht measurable with

0 < Ht(B) < ∞, then for Hs ×Ht × ω almost all (x, y, λ) ∈ A×B × Λ,

(4.5) dimP−1
λ {Pλ(x, y)} ∩ (A×B) ≥ s+ t−m,

and for ω almost all λ ∈ Λ,

(4.6) Lm({u ∈ Rm : dimP−1
λ {u} ∩ (A×B) ≥ s+ t−m}) > 0.
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Equalities need not hold in (4.5) and (4.6), but they hold if, for example, A or B is
Ahlfors-David regular.

The intersections A ∩ (g(B) + z), g ∈ O(n), z ∈ Rn, can be written essentially as level
sets of the restricted projections

Sg : R2n → Rn, Sg(x, y) = x− g(y) :

letting Π(x, y) = x we have

A ∩ (g(B) + z) = Π(S−1
g (A×B)).

Then a quantitative analogue of the projection theorem 2.8 for product measures combined
with Theorem 4.3 leads to the following:

Theorem 4.4. Let s, t > 0 with s + (n − 1)t/n > n or s > (n + 1)/2. If A ⊂ Rn is Hs

measurable with 0 < Hs(A) < ∞ and B ⊂ Rn is Ht measurable with 0 < Ht(B) < ∞,
then for Hs ×Ht × θn almost all (x, y, g) ∈ A×B ×O(n),

(4.7) dimA ∩ (g(B − y) + x) ≥ s+ t− n,

and for θn almost all g ∈ O(n),

(4.8) Ln({z ∈ Rn : dimA ∩ (g(B) + z) ≥ s+ t− n}) > 0.

Again, equalities need not hold, see [F4], but they hold if, for example, A or B is
Ahlfors-David regular.

I believe that this theorem should be true with the optimal hypothesis s+ t > n.
See [M4, Chapter 7] and [M5] for discussions and references for the intersection prob-

lems.

5. Besicovitch and Furstenberg sets

We say that a Borel set in Rn, n ≥ 2, is a Besicovitch set, or a Kakeya set, if it has zero
Lebesgue measure and it contains a line segment of unit length in every direction. This
means that for every e ∈ Sn−1 there is b ∈ Rn such that {te + b : 0 < t < 1} ⊂ B. It is
not obvious that Besicovitch sets exist but they do in every Rn, n ≥ 2, as was proved by
Besicovitch in 1919:

Theorem 5.1. For any n ≥ 2 there exists a Borel set B ⊂ Rn such that Ln(B) = 0 and
B contains a whole line in every direction. Moreover, there exist compact Besicovitch sets
in Rn.

Proof. It is enough to prove this in the plane, then B × Rn−2 is fine in Rn. We shall use
projections and duality between points and lines. More precisely, parametrize the lines,
except those parallel to the y-axis, by (a, b) ∈ R2:

l(a, b) = {(x, ax+ b) : x ∈ R}.
Then if C ⊂ R2 is some parameter set and B = ∪(a,b)∈C l(a, b), one checks that

B ∩ {(t, y) : y ∈ R} = {t} × πt(C)

where
πt : R2 → R2, πt(a, b) = ta+ b,
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is essentially an orthogonal projection. Suppose that we can find C such that π(C) = [0, 1],
where π(a, b) = a, and L1(πt(C)) = 0 for almost all t. Then L2(B) = 0 by Fubini’s
theorem and taking the union of four rotated copies of B gives the desired set. It is not
trivial that such sets C exist but they do. For example, a suitably rotated copy of the
product of a standard Cantor set with dissection ratio 1/4 with itself is such. □

The idea to construct Besicovitch sets using duality between lines and points is due to
Besicovitch from 1964. It was further developed by Falconer in [F3].

Conjecture 5.2 (Kakeya conjecture). All Besicovitch sets in Rn have Hausdorff dimen-
sion n.

Perhaps the main interest of this conjecture among Fourier analysts is that it would
follow from Stein’s restriction conjecture:

∥f̂∥Lq(Rn) ≤ C(n, q)∥f∥L∞(Sn−1) for q > 2n/(n− 1).

The Kakeya conjecture is open for n ≥ 3. In the plane Davies proved the following in
1971 in [D].

Theorem 5.3. For every Besicovitch set B ⊂ R2, dimB = 2. In particular, the Kakeya
conjecture is true in the plane.

The proof of this is, up to some technicalities, reversing the above argument for the
proof of Theorem 5.1 and using Marstrand’s projection Theorem 2.1(1).

Although the Kakeya conjecture in the plane follows rather easily by projection theo-
rems, it seems that one does not get far with them in higher dimensions.

Many people have made progress on the Kakeya conjecture since Fefferman in 1971
solved the multiplier problem for the ball by Kakeya methods and Bourgain [B1] in 1991
introduced powerful new methods to prove partial results for the Kakeya conjecture. The
most recent work is due to Wang and Zahl [WZ]. They proved that the Besicovitch sets
in R3 have Assouad dimension 3 and that the Ahlfors-David regular Besicovitch sets in
R3 have Hausdorff dimension 3.

Furstenberg sets are kind of fractal versions of Besicovitch sets. They originate in
Furstenberg’s paper [Fu]. We say that F ⊂ R2 is a Furstenberg s-set, 0 < s ≤ 1, if
for every e ∈ S1 there is a line Le in direction e such that dimF ∩ Le ≥ s. What
can be said about the dimension of F? Wolff [W2], Section 11.1, proved some partial
estimates, showed that there is such an F with dimF = 3s/2+1/2, and conjectured that
dimF ≥ 3s/2 + 1/2 would hold for all Furstenberg s-sets.

Ren and Wang solved the Furstenberg problem in [RW] by proving

Theorem 5.4. For any Furstenberg s-set F ⊂ R2 we have

dimF ≥ (3s+ 2)/2.

More generally, they proved the case (3s+2)/2 of the following theorem, the other two
cases were already known and easier. The Hausdorff dimension of the line set L is defined
using a natural metric on the 2-dimensional space of lines in the plane.
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Theorem 5.5. Let 0 ≤ s ≤ 1, 0 ≤ t ≤ 2. If F ⊂ R2 has the property that there exists a
family L of lines in the plane such that dimL ≥ t and dimF ∩ L ≥ s for every L ∈ L,
then

dimF ≥ min{s+ t, (3s+ 2)/2, t+ 1}.

The proof is based on the paper [GSW] of Guth, Solomon and Wang, where the problem
was solved for well-spaced sets, and the paper [OS] by Orponen and Shmerkin, where the
problem was solved for Ahlfors-David regular sets. These two classes are sort of opposite
to each other.

The proof in [OS] begins with addditive combinatorics and related projections dealing
with finite unions discs of radius δ. This topic was pioneered by Bourgain in [B2] and
related papers. These are used to prove dimension estimates for Furstenberg sets.

An essential feature of [GSW], and further of [RW], is the application of high-low
methods of Fourier analysis (recall Section 2), to prove incidence estimates for collections
B of δ-discs and T of δ-tubes (δ-neighborhoods line segments), that is, estimates for the
cardinalities of sets like {T ∈ T : T meets at least N discs B ∈ B}.
Orponen and Shmerkin [OS] showed how estimates on the dimension of Furstenberg

sets lead to estimates on the exceptional sets of projections. Using this and Theorem 5.5
Ren and Wang proved the sharp estimate of Theorem 2.4.
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