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The dynamics and stability of variable-length vertically traveling, heavy cables with an end load are investigated.

Such cables act as tethers in aerostat systems. The cable is modeled as a heavy string undergoing small, planar

vibrationswhile attached to a rigid, spherical aerostat.Aerodynamic andbuoyancy forces act only on the aerostat. An

asymptotic analysis for slow deployment rates provides excellent leading-order approximation to the dynamics,

which is also obtained from finite element simulations. Stability of the aerostat system is then investigated

computationally by considering the linear stability of the systemwhen it is perturbed from its nominal dynamical state

at any given time. It is found that, when an aerostat ascends, the cable always goes unstable after a certain time

through a divergence instability. In contrast, flutter instability is found in the cable during the aerostat’s descent.

These stability analyses help in thedevelopment of deployment charts that relate themaximumachievable elevation to

deployment rate. Such deployment charts can help in parameter selection for efficient aerostat deployment. The

dynamics of the aerostat in the presence of spatiotemporally varying aerodynamic forces are also studied

computationally. The paper concludeswith two case studies of aerostat deployment that demonstrate the utility of the

current analysis.

Nomenclature

A = cross-sectional area of the cable, m2

a, ~a = dimensional (ms−2) and nondimensional
acceleration of ascent/descent

�E, �EP, �EK = nondimensional total, potential, and kinetic
energies associated with the system

Fb = buoyancy force on the aerostat, N
�F = nondimensional net buoyancy force on the

aerostat
h = nondimensional elevation of the aerostat
L, l = dimensional (m) and nondimensional

lengths of the cable
M��t�, G��t�,K��t� = n × n global mass, gyroscopic, and stiff-

ness matrices of the system
m, ~m = dimensional (kg) and nondimensional

masses of the aerostat
q��t� = n × 1 nodal displacements of the cable
qend = end-tip (aerostat) deflection
q̂i = n × 1, ith eigenvector of the system at �t

equal to t̂
r = radius the aerostat, m
t, �t = dimensional (s) and nondimensional times
�t� = nondimensional critical time after which

the system goes unstable
v, ~v = dimensional (ms−1) and nondimensional

rates of ascent/descent
x = position of a point on the cable, m
y�x; t�, ~y�ζ; t� = transverse deflections of the cable, m
ζ = position of a point on the aerostat in the

mapped domain; x∕L
η�ζ; �t� = nondimensional transverse deflection

λi = ith eigenvalue of the system at �t equal to t̂
ρ = density of the cable, kg∕m−3

I. Introduction

A XIALLY translating continua with varying lengths gives rise
to rich dynamics [1–7] and has important engineering and

aerospace applications. For example, vertically traveling heavy
cables that lengthen or shorten find applications as tethers of high-
altitude balloons (aerostats); see, e.g., the work of Aglietti [8].
Tethered aerostat systems have been studied by Jones and Krausman
[9], Lambert and Nahon [10], Kang and Lee [11], Hembree and
Slegers [12], and Mi and Gottlieb [13]. In all these studies. the focus
was on the deployed state when the tether’s length was fixed.
Furthermore, all except Mi and Gottlieb [13] took the tether as a
composition of discrete elements, and they did not model it as a
continuum. Although the dynamics of variable-length tethered
satellite systems was investigated by Mankala and Agrawal [14,15],
no points weremade by the authors on the instability in such systems.
In this paper, we investigate the dynamics and stability of variable-
length vertically translating, heavy cables and apply it to study the
dynamics and stability of ascending/descending tethered aerostats.
Figure 1a shows a sketch of the aerostat system.
Initial investigations on the spaghetti problem (i.e., an oscillating

cable that is shortening in length) were carried out by Carrier [1].
Subsequently, Mansfield and Simmonds [2] investigated the dynamics
of a lengthening cable, issuing from an orifice, which the authors
termeda reversed spaghetti problem.Pesce [16] developed avariational
framework for the variable mass systems and investigated an example
of the deployment of a heavy cable from a reel. The dynamics of a
horizontally deploying cable attached to an end mass has been studied
by Crellin et al. [17]. In all these works, the primary goal was to
investigate the evolution of the spatial configuration of the tether in
time, whereas no investigation on the instability has been reported. The
dynamics of axially lengthening/shortening beams and cables has been
studied by Zhu and Ni [18] and Terumichi et al. [5] for application to
elevator systems, and by Stylianou and Tabarrok [3] andGosselin et al.
[6] in the context of extruding beams. A more involved geometrically
nonlinear formulation of axially lengthening/shortening geometrically
exact beams was provided by Vu-Quoc and Li [19].
Axially translating continua are susceptible to instabilities [6,20–22].

Instability in beams of periodically varying lengths has been studied by
Elmaraghy and Tabarrok [23], Zajaczkowski and Lipiński [24], and
Hyun andYoo [25]. In contrast, the change in the length of the tether of
an ascending/descending aerostat is monotonic. This monotonicity in
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the variation of the cable’s length necessitates a quasi-static eigenvalue
analysis of the system, as employed by Stylianou and Tabarrok [4] and
Gosselin et al. [6]. Nawrotzki and Eller [26] used the quasi-static
eigenvalue analysis to investigate stability of nonlinear structures. Zhu
and Ni [18] studied the stability of lengthening/shortening elevator
cables in light of evolution of the total mechanical energy of the
system. However, it was shown by Yang and Mote [27] and Ziegler
([28] pp. 36-40) that the evolution of energy could not be a measure of
the stability of a dynamical system in the presence of gyroscopic terms,
which typically arise in the study of travelling cables.
Our mathematical model is as follows. We model the cable as a

tensioned, heavy string of varying length and the aerostat as a rigid
sphere. As a first step, we restrict ourselves to small oscillations in a
plane. Aerodynamic and buoyancy effects are considered on the
aerostat alone. Our aerodynamic model, based on work by Tchen
[29], Corrsin and Lumley [30], and Maxey and Riley [31], includes
the effects of the flow’s pressure gradient, Stokes drag, and added
mass, but it ignores vortex shedding. We analyze the dynamics of
the aerostat system, both through an asymptotic analysis of a
reduced-order model and by a finite element analysis. The stability of
the aerostat system during deployment is found to depend crucially
on the stability of the lengthening/shortening cable (tether). This
stability is investigated computationally following the quasi-static
linear stability analysis mentioned previously. We find that all
ascending aerostats are susceptible to divergence instabilities,
which limits the maximum elevation that can be achieved in terms of
its deployment rate. Descending aerostats, on the other hand,
go unstable through a flutter instability. We note that we do not
incorporate structural damping in the cable at present, and this leads
to a more conservative description of instability.
This paper is organized as follows. In Sec. II, we derive the

equations ofmotion for ascending/descending aerostat systems using
both linear momentum balance and variational principle. Asymptotic
approximations are employed to investigate the vibrations of a
slowly ascending/descending aerostat system in Sec. III. Divergence
instability in ascending aerostats is then demonstrated in Sec. IV.
This instability is then investigated through an eigenvalue analysis.
Instability in descending aerostats is studied in Sec. V. We then
investigate the forced vibration of ascending/descending aerostat
systems under steady, temporally nonuniform air flow in Sec. VI.
Finally, in Sec. VII, we conclude with two case studies of ascending
aerostats that demonstrate how we may use our results.

II. Equations of Motion

In this section, we summarize the equations of motion for a

lengthening/shortening cable, modeling it as a heavy, inextensible

string of varying length; the details of the derivation are in the

supplementary material and [32]. Figure 1a shows our model for the

aerostat system: the aerostat is a rigid sphere of mass m that is

attached to a uniform cable of uniform density ρ and cross-sectional
areaA.We consider the rollers at the base to be small and smooth. The

length of the cable changes at a rate of v�t� � _L�t�, where �⋅� denotes
differentiation with respect to time t. The diagram in Fig. 1b shows

the body and end forces on the cable. The tension in the cable is

P�x; t�.We present the free body diagram of a cable element of length

Δs and the aerostat in Fig. 1c.
The distribution of tension in the heavy cable is obtained by

integrating the vertical balance of linear momentum along the cable:

P�x; t� � Fc�t� − ρAfg� �L�t�gfL�t� − xg (1)

where Fc�t� � P�x; t�jx�L�t� is the force exerted by the aerostat on

the cable.
To derive equations of motion from variational principles, we first

estimate kinetic and potential energies associated with the cable.

Expressions for kinetic and potential energy associated with

lengthening/shortening cables are respectively,

T � 1

2

Z
L�t�

0

ρA�fy;t � _L�t�y;xg2 � _L2�t�� dx (2)

and

V � 1

2

Z
L�t�

0

P�x; t��y;x�2 dx (3)

where y�x; t� is the transverse deflection of the cable, and the

subscripts indicate partial differentiation. The preceding expressions

are the same as for a traveling cable, fixed at both its ends; see

[18,33,34]. However, in this case, the length of the cable L�t� is not
constant and the tensionP�x; t� in the cable may vary with length and

time. We henceforth suppress the time dependence of L�t� and write
it as L. We now express the action integral as

c)

d)

b)a)
Fig. 1 Schematics of a) the aerostat system, b) the cable along with various forces acting on it, c) free body diagram of a cable element, and d) free body
diagram of the aerostat, now modeled as a sphere.
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Z
t2

t1

�δT − δV� dt � 0 (4)

where δ�⋅� is the variational operator.We note that the spatial domain
of integration is changing with time. A direct attempt to derive
equations of motion from this may invite additional complexity. To
overcome this problem, we perform a change of variable [19,35]. We
take ζ � x∕L such that 0 ≤ ζ ≤ 1. The transverse displacement
becomes ~y�ζ; t� � y�x; t�. Derivatives transform as

y;x � ~y;ζ
∂ζ
∂x

� ~y;ζ
L

; and y;t � ~y;t � ~y;ζ
∂ζ
∂t

� ~y;t − ~y;ζ
ζ _L

L

The modified expressions for kinetic and potential energy are then

T � 1

2

Z
1

0

ρAL

��
~y;t � �1 − ζ� ~y;ζ

_L

L

�2

� _L2

�
dζ (5)

and

V � 1

2

Z
1

0

�
Fc�t�
L

− ρAfg� �L�t�g�1 − ζ�
�
~y2;ζ dζ (6)

whereFc�t� � P�L; t� is the applied force at the free end of the cable.
Substituting the preceding in Eq. (4) and integrating the result by
parts, we obtain the governing equation for the aerostat system (see
the supplementary material for details):

ρAL ~y;tt�2ρA�1−ζ� _L ~y;ζt�ρA�1−ζ� �L ~y;ζ�ρA
∂
∂ζ

�
�1−ζ�2

�L2

L
~y;ζ

�

� ∂
∂ζ

��
Fc

L
−ρA�g� �L��1−ζ�

�
~y;ζ

�
(7)

and the geometric boundary condition at the roller (lower) end:

~y � 0 at ζ � 0 (8)

To obtain the natural boundary condition at the upper end of the
cable and the expression for the force Fc on the cable, we balance
vertical and horizontal forces on the aerostat attached to the cable at
x � L; see Fig. 1d. We obtain, respectively,

Fc�t� � Fb −m�g� �L� ≕ F −m �L (9a)

and

m�y;tt�2y;xt _L�y;xx _L
2�y;x �L��Fc�t�y;x � 0 at x�L (9b)

whereFb is the buoyancy force on the aerostat. Combining these two
equations and expressing in terms of ζ � x∕L yields

m

�
~y;tt −

�L

L
~y;ζ

�
� F

L
~y;ζ � 0 at ζ � 1 (10)

which represents the natural boundary condition for the system at the
upper end of ζ � 1. We nondimensionalize Eq. (7) to find

lη;�t �t � 2�1 − ζ�_lη;ζ�t � �1 − ζ��lη;ζ �
∂
∂ζ

�
�1 − ζ�2

_l2

l
η;ζ

�

� ∂
∂ζ

��
1

l
− ~m

�l

l
−
�
1

~F
� �l

�
�1 − ζ�gη;ζ

�
(11)

where the nondimensional deflection

η�ζ; �t� � ~y�ζ; t�∕L0

is defined in terms of initial length L0 of the cable, and the
nondimensional time is

�t � t
1

L0

������
F

ρA

s

whereas the total derivative with respect to �t is again denoted by �⋅�,
the nondimensional length of the cable is l��t� � L∕L0, the

nondimensional external force is ~F � F∕ρAgL0, and the nondimen-
sional mass of the aerostat is ~m � m∕ρAL0. We define the

nondimensional velocity ~v � _l � _L
������������
ρA∕F

p
, where

������������
F∕ρA

p
is the

speed of travelling waves in a string kept at a constant tension F.
Finally, we define a nondimensional acceleration of

~a � �l � �LρA∕F. The boundary conditions [Eqs. (8) and (10)] are
nondimensionalized as

η � 0 at ζ � 0 (12a)

and

~m

�
η;�t �t −

�l

l
η;ζ

�
� 1

l
η;ζ � 0 at ζ � 1 (12b)

The transverse vibrations of the lengthening/shortening cable are
governed by the partial differential equation [Eq. (11)] alongwith the
boundary conditions [Eq. (10)].
Wemake two comments. The system does not preserve energy due

to a continuous supply/depletion of mass at the cable’s lower end.
Thus, the system is non-Hamiltonian. We also note the presence of
the gyroscopic term η;ξ�t in Eq. (11), which affects the stability of the
system but does not contribute to the system’s kinetic energy. Thus,
an energetic stability analysis will be incomplete because it will
overlook the role of such gyroscopic terms; see, e.g., the work of
Ziegler ([28] pp. 36–40).

III. Slowly Lengthening/Shortening Cables

It is possible to make significant progress through the analysis of a
reduced-order model when the cable’s lengthening/shortening rate is
small. To develop a reduced-order model of the system, we express
the deflection η�ζ; �t� as

η�ζ; �t� �
Xn
i�0

Wi�ζ�qi��t�

whereWi�ζ� is the ith mode of vibration that satisfies the geometric
boundary condition [Eq. (12a)], and qi��t� is the temporal evolution of
themode. A reduced-order model is obtained by considering only the
first mode, which is taken to be

W�ζ� � sin

�
π

2
ζ

�
(13)

We replace the preceding approximation in the weighted residual
form associated with Eq. (11) and the natural boundary condition
[Eq. (12b)], and we follow Galerkin’s method; see the work of
Hagedorn and Dasgupta ([36] pp. 47–49). Projection onto the
first mode leads to a single-degree-of-freedom approximation of
Eq. (11), viz.,

�2 ~m� l� �q��t�� _l _q��t��
�
χ �l� κ

�
�l

l
� 4

_l2

l2

�
� α

l
� β

_l2

l
� γ

�
q��t� � 0

(14)

where

α � π2

4
; β � −

�
1

2
� π2

12

�
; γ � −

1

~F

�
π2

8
� 1

2

�
;

κ � −
π2

4
~m and χ �

�
1

2
−
π2

8

�
(15)

70 MUKHERJEE, SHARMA, AND GUPTA

D
ow

nl
oa

de
d 

by
 I

N
D

IA
N

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
O

ct
ob

er
 2

7,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

49
31

 

http://arc.aiaa.org/doi/suppl/10.2514/1.C034931


Wenow investigate the single-degree-of-freedommodel [Eq. (14)]
through asymptotics.

A. Asymptotic Analysis

The time scale of transverse vibrations may be estimated from the
frequency of the first mode of a cable of fixed lengthL, and this yields

2L∕
������������
F∕ρA

p
([36] pp. 47–49). This time scale, however, changes with

the cable’s length on a time scale L∕v associated with the deployment
rate v of the cable. For typical aerostat systems, the ratio of these two

time scales is v∕
������������
F∕ρA

p
≪ 1, so that fast transverse vibrations are

modified slowly by the deployment rate. Indeed, for usual deployment

rates of v � 1.0–1.2 ms−1 [37,38] and representative values of

F�≈350 kN� and ρA�≈3.75 kg∕m−1�, we find that v∕ ������������
F∕ρA

p
lies in

the range 0.002–0.005. We thus expect the system’s dynamics to
display “slow” and “fast” time scales associated with, respectively, its

axial lengthening/shortening and its transverse vibrations.
Given the preceding discussion, we express time as

�t � T � τ�O�ϵ2� (16)

where T � O��t�, τ � ϵ�t is the slow time scale; and 0 < ϵ ≪ 1 is a
small parameter introduced to aid the perturbation analysis. By our

assumption, l�T; τ� � l�τ�. It is shown in [32] that a regular multiple
scale perturbation method fails for nonautonomous systems like
Eq. (14). This drawback of the multiple scale method may be
overcome through the Wentzel–Kramers–Brillouin (WKB) method;

see ([39] pp. 556–559) or ([40] pp. 127–129). In the WKB method,
we assume q to be of the form

q � q�T�; τ; ϵ�

where T� ≠ T is a modified fast time, defined as T� � ϕ�τ�∕ϵ; the
function ϕ�τ�will be defined later. The choice of ϕ�τ�must ensure a
periodic solution of q in T� so that q�T�; τ; ϵ� � q�2π � T�; τ; ϵ�.
Employing the definitions of T� and τ and treating them as
independent quantities, the chain rule yields

d�⋅�
d�t

� ∂ϕ�τ�
∂τ

∂�⋅�
∂T� � ϵ

∂�⋅�
∂τ

(17a)

and

d2�⋅�
d�t2

�
�
∂ϕ�τ�
∂τ

�
2 ∂2�⋅�
∂T�2�ϵ

�
2
∂ϕ�τ�
∂τ

∂2�⋅�
∂T�∂τ

�∂2ϕ�τ�
∂τ2

∂�⋅�
∂T�

�
�ϵ2

∂2�⋅�
∂τ2

(17b)

Expanding temporal derivatives in Eq. (14) as shown earlier and
collecting O�1� terms, we obtain�

∂ϕ�τ�
∂τ

�
2 ∂2q0�T�; τ�

∂T�2 � ψ�τ�2q0�T�; τ� � 0 (18)

where

ψ�τ� �
�

α

l�τ�f2 ~m� l�τ�g �
γ

2 ~m� l�τ�
��1∕2�

We now define

ϕ�τ� �
Z

τ

0

ψ�τ� dτ

so that ∂ϕ�τ�∕∂τ � ψ�τ�, and this simplifies Eq. (18).
With this, the general solution of Eq. (18) is obtained as

q0�T�; τ� � A0�τ�eiT� � �A0�τ�e−iT�

To obtain A0�τ�, we collect O�ϵ� terms from Eq. (14) after

expanding its temporal derivatives through Eq. (12) to find

∂2q1�T�;τ�
∂T�2 �q1�T�;τ�� 2

ψ�τ�
∂2q0�T�;τ�

∂T�∂τ
� 1

ψ�τ�2
∂ψ�τ�
∂τ

∂q0�T�;τ�
∂T�

� 1

ψ�τ�f2 ~m� l�τ�g
dl�τ�
dτ

∂q0�T�;τ�
∂T� �0 (19)

To obtain periodic solutions, we collect secular terms (coefficients

of eiT
�
) in Eq. (19) and equate them to zero. This yields the equation

dA0�τ�
dτ

� 1

2ψ�τ�
dψ�τ�
dτ

A0�τ��
1

2�2 ~m� l�τ��
dl�τ�
dτ

A0�τ�� 0 (20)

for A0�τ�, for which the solution is

A0�τ� �
a0����������������������������������

ψ�τ�f2 ~m� l�τ�gp � a0�������������������������������������������������fα∕l�τ�� γgf2 ~m� l�τ�g4
p (21)

where the constant a0 is fixed by initial conditions. The preceding

represents the evolution of the amplitude as a function of slow time τ.
Finally, the leading-order solution is

q0��t� � q0�T�; τ; ϵ� � A0�τ� cosT� � A0�τ� cos
�
ϕ�τ�
ϵ

�
(22)

Substituting ϕ�τ� in the preceding equation yields

q0�T; τ� � A0�τ� cos
��

1

τ

Z
τ

0

ψ�τ� dτ
�
T

�
� A0�τ� cosf �ψ�τ�Tg

(23)

where

�ψ�τ� � 1

τ

Z
τ

0

ψ�τ� dτ

is the leading-order estimate of the first natural frequency. In Eq. (23),

the slowly varying amplitude A0�τ� forms the envelope of the fast

oscillations represented by the cosine term.
We now approximate the energy associated with the assumed

mode [Eq. (13)].

B. Energy Associated with the First Mode

The total energy of axially lengthening/shortening cables does not

remain constant in time becausewe are constantly adding/subtracting

mass from the system. Thus, we expect the energy associatedwith the

first mode [Eq. (13)] to vary with time.
The leading-order approximation of the total nondimensional

energy associated with the first mode [Eq. (13)] is

~E�τ� � 1

4

�
α

l�τ� � γg

�
A2
0�τ� �O�ϵ� (24)

where the nondimensional energy is ~E � E∕FL0, the constantsα and
γ are given by Eq. (15), and A0 is obtained from Eq. (22).

Equation (24) is derived in the supplementarymaterial and from [32].

We now compare our approximations A0�τ�, �ψ�τ�, and ~E�τ� with
direct numerical solutions.

C. Comparison with Full Finite Element Solution

We now compare our reduced-order analysis with solutions found

using a finite element (FE) analysis for which the details are available

in the Appendix. In our FE and reduced-order analysis, we use the

design parameters employed for the aerostat system, which were

studied by Aglietti et al. [41] and Aglietti [8]. The parameters are

shown in Table 1. We will consider the temporal evolutions of the

envelope of the amplitude A0�τ� and the natural frequency �ψ�τ�
corresponding to the first approximated mode and the energy E�τ�
associated with this mode.
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We begin with the envelope A0�τ� of oscillation. We investigate

two examples here. First, we consider a cable that lengthens and

shortens at a constant rate of ~v � 5 × 10−4; the results are shown in
Figs. 2a and 2b, respectively. Next, in Figs. 2c and 2d, we consider,

respectively, a cable that lengthens and shortens from rest at a
constant acceleration of ~a � 5 × 10−7. Our results qualitatively

match those of Zhu and Ni [18], whose boundary conditions were,

however, different.
Evolutions of the first natural frequency obtained from FE

computation [corresponding to the first mode of Eq. (A5)] and from

the asymptotic analysis of the reduced-order model are presented in
Fig. 3. We note that the change in frequency of the single-mode

approximation [Eq. (23)] matches the FE solution qualitatively. The
deviations are because the first mode shape of the system, as obtained

from FE computations, is not the same as our assumed mode shape

[Eq. (13)]; cf. Fig. 4.
We present the evolution of energy associated with the first

eigenmode obtained from FE computations for various lengthening/

shortening rates in Fig. 5. Initially, the cable is deformed into the
shape of the first eigenmode of a cablewith a constant length of l � 1,
which is the initial length of the lengthening/shortening cable. The

initial configuration of the cable is shownwith a dashed line in Fig. 4.
We also show the evolution of energy E�τ� obtained from the
asymptotic analysis in the same figure. Our approximation for energy
E�τ� again matches qualitatively with the energy associated with the
first eigenmode of Eq. (A5). The departure from an exact match may
be explained as in the case of natural frequency.
We see in Fig. 5 that the total energy of oscillations decreases for a

lengthening cable and grows to infinity as the length tends to zero for
a shortening cable. A stability analysis of axially lengthening and
shortening cables, based on the evolution of total energy in time, was
presented by Zhu and Ni [18]. These authors assume that the system
is unstable if the total energy associated with the perturbed cable
increases with time. Thus, axially shortening cables are claimed to be
inherently unstable. However, there is no obvious reason for an
energetic stability criterion to indicate Lyapunov stability in the
current non-Hamiltonian system that has gyroscopic terms; see, e.g.,
the works of Yang and Mote [27] and Ziegler ([28] pp. 36–40).
Therefore, in the next section, we will investigate stability through a
spectral analysis.

IV. Instability in Ascending Aerostats

In the previous section, we discussed the dynamics of a heavy
cable, for which its rate of lengthening/shortening is slow. We now
consider the dynamics of the aerostat system for faster rates of ascent.
Our FE computations, using parameters given in Table 1, show that,
at a constant rate of ascent ~v � 0.0175, displacements of the lower

nodes start increasing rapidly after �t > 9.7 × 105; see Figs. 6a and 6b.

Additionally, for �t > ×105, the nodal displacements no longer remain
oscillatory. Figures 6c and 6d show that, as time elapses, the upper

Table 1 Designparameters for the aerostat system

Parameter Value

Tether mass per unit length ρA 3.750 kg∕m−1

Aerostat mass� payload m 15,000 kg
Buoyancy force Fb 500 kN
Aerostat radius r 30 m

a) b)

c) d)

,

,

,

Fig. 2 Time series response, FE solution withA0�τ�: a) lengthening and b) shortening cable with constant rate of ~v � 5 × 10−4, and c) lengthening and

d) shortening cable with constant acceleration of ~a � 5 × 10−7.
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nodes gradually begin rapid and aperiodic motion. We will
subsequently identify this rapid increase of nodal deflections as
instability of ascending cables. Note that the jaggedness at the bottom
of the cable is random, and it increases with the number of finite
elements. This is because the poststability behavior of the cable
cannot be captured by the model, and thus the individual nodal
displacements randomly approach infinity as the instability sets in.
Figure 6 shows that instability first sets in at the lowest free

computational node (node 2) of the cable and then propagates

upward. Thus, we plot the deflection q2��t� of node 2 against �t to
investigate how the ascending rate ~v affects the critical time �t � �t�;
after which, the cable becomes unstable.
The variation of q2 with �t for different constant rates ~v is shown in

Fig. 7.We see that, after a certain �t � �t�, q2 ceases to oscillate about a
mean. Instead, q2 increases rapidly for �t ≥ �t�, thereby destabilizing

the system. Figure 7 also shows that �t� reduces with increasing �v.
Additionally, we observe that, at the onset of instability, the total

energy associated with the aerostat system �E becomes negative and

rapidly approaches −∞ as �t > �t�; see insets in Fig. 7. To understand
why �E → −∞ for �t > �t�, we write the total energy as

�E � 1

2
_qTM _q� 1

2
qTKq (25)

where M and K are the global mass and stiffness matrices,
respectively; and q and _q are the nodal displacement and velocity
column vectors, respectively. See the Appendix for details. The first

term in the preceding equation represents the kinetic energy �EK,

whereas the second term is the potential energy �EP of the system.

Now, for �E to be negative, either �EK, �EP, or both must be negative.
From the Appendix, we find thatM is a diagonal matrix consisting of
strictly nonnegative and real elements. Thus, M is positive definite

for all �t and �EK cannot be negative for any _q. Thus, it must be that �EP

becomes negative for �t ≥ �t�, which in turn implies thatK no longer
remains positive definite after �t ≥ �t�.
These observations are now validated by FE computations in

Fig. 8, which reports the variations of �E, �EK , and �EP with �t. Figure 8
shows that �EP becomes negative before �E does, and it eventually

forces �E to become negative.We note that �EK remains positive for all

,,

,

c) d)

b)a)

Fig. 3 Evolution of the first natural frequency, FE solution with �ψ�τ�: a) lengthening and b) shortening cable with constant rate of ~v � 5 × 10−4, and
c) lengthening and d) shortening cable with a constant acceleration of ~a � 5 × 10−7.

Fig. 4 Comparison of the shape of the first eigenmode of a cable in the
ζ � x∕L domain obtained from FE computations (dashed line) with the

single-mode approximation [Eq. (13)] (solid line).
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�t, confirming the positive definiteness of M for all �t. The sudden

increase in �EK for �t > �t� is due to the rapid increase of nodal

velocities _�u after the onset instability. The increasingly steep nature of
q2 (�t) for �t > �t�, shown in Fig. 7, confirms this rapid growth in nodal
velocities.
We now investigate the effect of positive definiteness of K on

stability of the system by considering the eigenvalues of

M��t� �q��t� �G��t� _q��t� �K��t�q��t� � 0 (26)

whereG��t� is the gyroscopic matrix defined in the Appendix; see also
thework of Yang andMote [27] and Ziegler ([28] pp. 36–40).We find
thatdetfG��t�g is constant in �t for a fixed ~v, whereas the determinants of
the mass matrix (detfM��t�g) and the stiffness matrix (detfK��t�g) are,
respectively, monotonically increasing and monotonically decreasing
with �t. In contrast to the stability analysis of structureswithperiodically
varying lengths [23–25], we investigate the stability at any time �t � t̂
of the aerostat system through the linearized dynamics of the
perturbed system that, in the unperturbed state, is taken to be of fixed

length: l� � l�t̂�. This quasi-static stability analysis gives a good
approximation of the stability limits for continuous systems with
monotonically increasing/decreasing lengths [4,6,26]. Indeed, as we
will see later in this section, quasi-static instability predictions match
well with direct numerical simulations.
At a given instant of time �t � t̂, we decompose q�t̂� into a linear

combination of the eigenmodes of Eq. (26):

q�t̂� �
Xn
i�1

exp�λi t̂�q̂i

where λi is the ith eigenvalue of the system [Eq. (26)] at �t � t̂, and q̂i
is the corresponding eigenvector. We represent the eigenvalue
problem associated with Eq. (26) as the matrix equation

λ2iM�t̂�q̂i � λiG�t̂�q̂i �K�t̂�q̂i � 0

Premultiplying the preceding equation with q̂�i , which is the

conjugate transpose of q̂i, we obtain the scalar equation

A�t̂�λ2i � B�t̂�λi � C�t̂� � 0

where A � q̂�i M�t̂�q̂i, B � q̂�i G�t̂�q̂i, and C � q̂�i K�t̂�q̂i are

functions of time. Now, λi is obtained as

λi �
1

2
�−g	

����������������
g2 − 4k

q
� (27)

where g � B∕A, and k � C∕A. The system is defined to be linearly

unstable if at least one λi � αi � ιβi, with ι �
������
−1

p
, hasαi � βi � 0

or αi ≥ 0 and βi ≠ 0 ([42] pp. 28–33, [28] pp. 36–40). FromEq. (27),
we observe that one root vanishes when k � 0 [i.e., when
det�K� � 0] and divergence instability sets in when k becomes
negative. Thus, as in undamped gyroscopic systems [27,43], any
negative definite K implies divergence instability in the ascending
aerostat system. At the same time, we note that the positive
definiteness of K is a necessary but not sufficient condition for
stability ([28] pp. 36–40).Wewill see in the next section that, in spite
of K being positive definite, flutter instability may set in the
descending aerostat system. Here, we note from the Appendix that

,

, ,

a) b)

c) d)
Fig. 5 Energy associated with the first eigenmode, FE solution with �E�τ�: a) lengthening and b) shortening with constant rate of ~v � 5 × 10−4, and
c) lengthening and d) shortening with constant acceleration of ~a � 5 × 10−7.
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det�G� < 0, which results in g < 0 for a descending aerostat system.

We now compare our remarks for λi with computations.
We plot the evolution of the first three eigenvalues of Eq. (26) with

�t for different but constant rates of ascent in Fig. 9. Here, we observe
that divergence instability sets in when λ1 � 0 at �t � �t�, which is

defined in Fig. 7. Thus, the critical time �t � �t� found in Fig. 7 indeed
defines the stability boundary for ascending aerostat systems for a

given ~v. Hence, the motion, observed in Figs. 6a–6d, is due to

divergence instability, which is now explained by employing a linear

stability analysis.
The preceding analysis motivates us to develop deployment charts

for ascending aerostats. Figure 10a shows stable and unstable

operational regimes. This boundary separating two regimes is

obtained by noting the time t� at which the cable ascending at �vt first
becomes unstable. Conversely, �vt is the minimum rate of ascent at

which instability will initiate at t�. Similarly, at a particular rate of

ascent (say, ~vd) we may find the critical time �t�d beyond which the

ascending aerostat is unstable.
Figure 10b shows another deployment chart for the critical

elevation h�d that may be achieved in a stable manner at a given

constant rate of ascent ~vd. Figure 10b shows that, to achieve

maximum elevation, the deployment of the aerostat should be done

quasi statically, i.e., with j ~vdj ≪ 1. However, this is not practical.
A possible alternative is to select a finite ~vd and augment the

buoyancy force Fb instead. As shown in Fig. 10b, the maximum

allowable elevation of the aerostat is greater at higher values of the net

upward pull F � Fb −mg; cf. Eq. (9a). The latter may be achieved

by expanding thevolumeof the aerostat. If the rate of deployment and

the desired elevation is given, we may select an optimal F from

Fig. 10b. We note from Fig. 10b that the overall maximum elevation
achievable hmax is seenwhen the ascent rate is vanishingly small. The
elevation hmax is regulated by the length of the cable at which the
tension P�0; t� at the bottom of the cable first becomes zero and,
consequently, the aerostat system becomes unstable. At this time, the
upward buoyancy force Fb balances the combined weight of the
aerostat and the cable. This may be understood by noting that, when
P�0; t� vanishes, the resulting stiffness of the cable becomes zero
locally, and hence K becomes singular. We emphasize that, at
nonzero rates of deployment, that vanishing of the base tension is not
the cause for the instability that regulates the maximum achievable
elevation.
Finally, the rate of deployment of aerostats may not be kept

constant during deployment. In Sec. VI, we investigate the case of
nonconstant deployment rates.

V. Instability in Descending Aerostats

It was shown in Figs. 3b, 3d, 4b, and 4d that the first natural
frequency of the oscillation and total energy of a descending aerostat
system approach infinity as the cable’s length l → 0. We now
investigate the stability of the aerostat system as it descends at a
constant rate by considering the evolution of the eigenvalues
of Eq. (26).
Consider first the structure of thematricesM,G, andK in Eq. (26),

which is given in the Appendix. We observe that, for _l < 0,
gyroscopic matrix G no longer remains positive definite. Thus, g
becomes negative in Eq. (27), resulting in a positive real part in the
eigenvalues λi, i.e., the λi always have a αi > 0 with βi ≠ 0. This,

c) t = 10.5 × 105 d) t = 11.0 × 105

a) t = 8 × 105 b) t = 9.9 × 105

Fig. 6 Deflected shapes of the cable at different time instants while ascending at a constant rate of ~v � 0.0175.

MUKHERJEE, SHARMA, AND GUPTA 75

D
ow

nl
oa

de
d 

by
 I

N
D

IA
N

 I
N

ST
IT

U
T

E
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
O

ct
ob

er
 2

7,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

49
31

 



in turn, introduces flutter instability in the system [27]. This
observation is confirmed by the evolution in Fig. 11 of λ1, λ2, and λ3
found from FE computations. Figure 11 shows that λi (i � 1; 2; 3)
always have αi > 0 and βi ≠ 0. Themagnitude of αi initially remains

very small. However, as l → 0, α2 and α3 grow to infinity. This is

because det�M� → 0 as l → 0 so thatM eventually becomes singular

at l � 0. Interestingly, α1 0 for all l�t� because of the presence of a
heavy, lumped mass (the aerostat) at the end of the cable, which

causes α1 ≪ α2; α3; see the supplementary material for details.

Figures 11a and 11b also show that the βi increase with lowering l
and, eventually, grow to infinity as l → 0 and M becomes singular.
The increase in βi is in agreement with the asymptotic analysis of
Fig. 2b, in which we se high-frequency oscillations as l → 0.
Physically, we may interpret a cable of l ≪ 1 as a system with very
high stiffness; indeed, we note from the Appendix that every element
ofK ∝ 1∕l. Thus, analogous to a single-degree-of-freedom system,
the aerostat system with high stiffness will have large natural

frequencies, which are proportional to the eigenvalues of
��������������
M−1K

p
.

a) b)

c) d)
Fig. 7 Evolutions of deflection of node 2 and total nondimensional energy �E (inset) in time for different rates of ascent: a) ~v � 0.2, b) ~v � 0.3, c) ~v � 0.4,
and d) ~v � 0.5.

a) b)
Fig. 8 Evolutions of total nondimensional energy �E, kinetic energy �EK and potential energy �EP with time for different rates of ascending: a) ~v � 0.2 and
b) ~v � 0.3.
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Figures 2b and 11a do not agree completely: Fig. 11 shows flutter
instability sets in a descending aerostat and the fluttering frequency

and amplitude increase as l → 0. However, as l → 0, in spite of an

increase in the frequency, we see a temporal decay of the amplitude in
Fig. 2b. To explain this disagreement, we divide the lateral end

displacement qend plotted in Fig. 2b by the changing length of the

cable and plot qend∕l��t� in Fig. 12 for two constant rates of descent.
This scaling is required to represent the descending aerostat system

by an equivalent system of constant length l � 1, which is necessary
in order to compare with the computational stability analysis that is
carried out at any time �t only after fixing the cable’s length at that

time. This scaling should not be confused with the mapping of x onto

,

,

,

,

,

a) b)
Fig. 10 Deployment charts: a) stability regime in �t– ~v space, and b) maximum achievable elevation when the cable extends at a constant rate.

a) b)

c) d)
Fig. 9 Variation of real and imaginary parts of eigenvalues of first threemodes shown for different rates of ascent: a) ~v � 0.2, b) ~v � 0.3, c) ~v � 0.4, and
d) ~v � 0.5.
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ζ in Sec. II, which was introduced to map the aerostat system with
changing lengths onto a unit length. The lateral displacement y�x; t�,
however, was scaled by the initial length L0 in Sec. II. Once we scale
q2 of Fig. 2b by l��t�, we do observe a flutter instability in the
descending aerostat in Fig. 12, which confirms the predictions in
Fig. 11, which were made on the basis of the system’s eigenvalues.
Finally, increasing flutter as l → 0 is similar to what is observed in

shortening pendulums [44–46], in which the amplitude of oscillations
blows up as l → 0, and consequently the small amplitude assumption
ceases to hold. Instability in shortening cables was explained on the
basis of the temporal evolution of total energy by Zhu and Ni [18]. In
contrast, we have followed a spectral analysis ([42] pp. 28–33) that, as
discussed at the end of Sec. II, is the correct way to investigate
instability in non-Hamiltonian gyroscopic systems (Yang and Mote
[27] and Ziegler [28] pp. 36–40). From a practical standpoint, to avoid
fluttering, the tether of the aerostat must have a finite length evenwhen
it is retracted to its lowest position. Moreover, retraction must be done
with intermediate breaks; during which, the perturbations of the cable
can be damped out by viscous air drag.
We now move on to investigate the effect of air flow on the

dynamics of the cable.

VI. Forced Vibration

So far, we have not incorporated external forces (e.g., from air
drag) into our analysis.We now investigate the forced response of the
system. We begin by introducing a model for aerodynamic forces.

A. Aerodynamic Forces

Consider a lengthening/shortening cable that is attached to an

aerostat, which is modeled as a rigid sphere. For simplicity, we

consider air drag only on the aerostat and not on the cable. This is

acceptable as a first approximation because we expect the drag on the

cable to be much smaller as compared to that on the aerostat. A model

for the dynamics of a rigid sphere (aerostat) submerged completely in a

Newtonian fluid (air) is as follows [29–31]:

m
dVi

dt
� mf

�
Dui
Dt

− νΔui
�
Y�t�

−
1

2
mf

d

dt
�Vi�t� − ui�Y�t�; t��

− 6πrμ�Vi�t� − ui�Y�t�; t�� � �m −mf�gi � F�e�
i (28)

where the operator D�⋅�∕Dt is defined as

D�⋅�i
Dt

� ∂�⋅�i
∂t

� ∂�⋅�i
∂xj

�⋅�j

and the subscripts i and j represent different components of a vector;Δ
is the Laplacian operator; mf is the mass of air displaced by the

aerostat; ν and μ are kinematic and dynamic viscosities of air,

respectively; r is the radius of the aerostat with its center located at a
position Y�t� and moving at a velocity V; and u is the velocity of air.

The termmf�Dui∕Dt − νΔui� on the right-hand side of Eq. (28) is due
to the pressure gradient imposed by the air flow. The second term

,

a) b)
Fig. 12 Temporal evolution of the perturbedmotion of the aerostat relative to its changing length for two constant descending rates: a) ~v � −0.0001 and
b) ~v � −0.001.

,

a) b)
Fig. 11 Variation of real and imaginary parts of the eigenvalues of the first three modes, shown for two different rates of descent: a) ~v � −0.0001 and
b) ~v � −0.001.
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0.5mfd�Vi�t� − ui�Y�t�; t��∕dt

is the added mass on the aerostat. The next three terms represent,

respectively, the viscous Stokes drag, buoyancy, and (nonaerody-

namic) external force F�e� due to, in our case, the cable.
We consider only horizontal air flow for which the speedmay vary

vertically and with time. As μair is about 10
−5 kg∕�m−1 ⋅ s−1�, we

take air to be inviscid. Because aerodynamic forces act only on the

aerostat, the only change in the equations of motion will be in the

boundary condition at ζ � 1 [i.e., Eq. (10)] that, after non-
dimensionalizing (as in Sec. II), becomes

~m

�
η;�t �t � 2

_l

l
�1 − ζ�η;ζ�t �

_l2

l2
�1 − ζ�2η;ζζ − ζ

�l

l
η;ζ

�

� 1

l
η;ζ � ~mf

�
~u;�t �

~u

l
~u;ζ

�
−
1

2
~mf

�
η;�t �t

� 2
_l

l
�1 − ζ�η;ζ�t �

_l2

l2
f�1� ζ2�η;ζg;ζ � �1 − ζ�

�l

l
η;ζ − ~u;�t

�
(29)

a) b)
Fig. 13 Representations of a) steadyvelocity profile of air, andb) end-tip displacement of cable. The aerostat is ascending at a constant rate of ~v � 0.0025.

a) b)

c) d)

Fig. 14 Representations of a) variation of first three natural frequencies of the system with time, b) the time series response of end-tip displacement,
c) variation of total energy, d) frequency domain response of the system.
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where ~u is the nondimensional velocity of air: ~u � u
������������
ρA∕F

p
, and

~mf � mf∕L0ρA is the nondimensional mass of the air displaced by

the aerostat. In the preceding equation, we identified V and Y�t� in
Eq. (28) with, respectively, ~y;tt and ζ � 1. We now investigate the

effect of aerodynamic forces on the aerostat. Note that we ignore

changes in the tension in the cable due to its lateral deflection. This is

because of the very small inclination of the cable with the vertical

(≈1.5 deg) as obtained from computations with practical aerostat

data under wind load; see Fig. 13. The computation scheme is as

discussed in the Appendix, but it now includes the modified

boundary condition [Eq. (29)].

B. Results

In this section,we assume the density of air (ρair � 1.205 kg∕m−3)

remains constant with the altitude. We first consider a steady air flow

profile, shown in Fig. 13a. The flow profile is obtained from the air

flow data provided by Badesha and Bunn [47]. This air flow exerts

drag on the aerostat. The temporal response for an ascending aerostat

with a constant of ~v � 0.0025 is shown in Fig. 13b. The response is
similar to that observed during free vibration, except that the mean of

the oscillation shifts in the direction of air flow.

We now consider an air flow that is uniform in space but for which

the amplitude changes with time as ~u��t� � 0.1 sin� ~ωf �t�. The cable
extends at a constant rate of ~v � 0.0025. As the aerostat ascends, the
natural frequencies of the system decrease. The temporal variations

of the first three natural frequencies ~ω1, ~ω2, and ~ω3 of the system are

depicted in Fig. 14a.We note from Fig. 14a that therewill always be a

time �t� after which one of the natural frequencies of the system will

match ~ωf. As an example, we take ~ωf � 0.0075 and note the

corresponding �t� from Fig. 14a at which ~ωf equals ~ω1. As shown in

Fig. 14b, the system resonates when �t � �t�. Figure 14c confirms that
there is a sudden change in the total energy of the system at �t � �t�.
However, the aerostat’s displacement qend cannot grow continuously
because the natural frequency of the system shifts away from ~ωf

when time goes beyond �t�. Finally, the frequency domain response of
the system is shown in Fig. 14d. The surface shown in Fig. 14d is the
envelope of qend for various excitation frequencies ~ωf. We note that

large-amplitude vibrations occur in the range of 0 < ~ωf < 0.03. Our

computations predict that, when ~ωf ≥ 0.03, vibration amplitudes are

not very large because they are driven by resonant interactions with
the second or higher modes of the system. Figure 14d matches
qualitatively with the experimental results of Yamamoto et al. [48],
who investigated forced vibration of a lengthening/shortening cable
that was fixed at its ends.
Next, we investigate the frequency domain response of a

descending aerostat. The aerostat system is taken to be retracting at a
constant rate of ~v � 0.0025. We note from Fig. 15a that the first
natural frequency slowly grows from ~ω1 � 0.08. Therefore, we
expect resonance when ~ωf ≥ 0.08. We again define time �t� in

Fig. 15a as the time at which ~ω1 � ~ωf. We set ~ωf � 0.1 and obtain

the time domain response for end deflection and velocity; see
Fig. 15b.We observe from Fig. 15b that the amplitude begins to grow
at �t � �t�. As before, the amplitude cannot grow continuously as the
first natural frequency of the system shifts from ~ωf. The total energy

of a shortening cable is seen to increase with time for reasons
discussed in Sec. III. We find from Fig. 15c that energy now grows
even more rapidly due to resonance. Finally, the frequency domain
response of the system is depicted in Fig. 15d. We note that
amplitudes do not grow for excitation frequencies beyond 0.3. It
suggests that resonance in a shortening cable is significant only for
~ωf near its first natural frequency ~ω1. Figure 15d is also in a good

c) d)

a) b)

Fig. 15 Representations of a) variation of first three natural frequencies of the system in time, b) time series response of end-tip displacement, c) variation
of total energy, and d) frequency domain response of the system.
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qualitative match with the experimentally obtained frequency
domain response of a shortening cable that has both of its ends
fixed [48].
We end this section with two comments. The waviness in the

energy plots of Figs. 14c and 15c is due to the periodicity in the
aerodynamic forcing. Thewaviness in the surface plots Figs. 14d and
15d is due to the waviness in the envelope of the amplitudes, as
extracted directly from the simulations. Waviness in the frequency
domain response was also observed in the experiments on forced
vibrations of lengthening/shortening cables by Yamamoto et al. [48].

VII. Case Studies

Finally, we demonstrate the practical applicability of our results
through two studies of ascent of an aerostat from an initial tether
length of L0 � 1 m in the presence of air flow. We first note from
Fig. 10b that, when there is no wind present, with Fb � 500 kN, an
elevation of 10 km can be safely achieved at a constant rate of ascent

v � 1.2 ms−1, which corresponds to a nondimensional ~v ≈ 0.004.

A constant rate of ascent/descent of v ≈ 1.0–1.2 ms−1 is typical for an
aerostat system [37,38,47].We now investigate the effect of the air
flow profile shown in Fig. 16a, which is a fitted smooth curve
to the air flow data obtained from Badesha and Bunn [47].
Furthermore, the rate of ascent v will now follow a prescribed
temporal profile.
In the first case, the aerostat is set to ascend up to an elevation of

5 km,which is a typical elevation for an aerostat [8,41] and is less than
the nominal safe elevation limit of 10 km. We plot the end deflection
qend in Fig. 16b,whereas the profile of the ascent rate of the aerostat is
depicted in Fig. 16c, which shows sharp acceleration/deceleration at

the start/end of ascent. We find that the aerostat oscillates about a

shifted equilibrium while lengthening, behaving similarly to the case

of Sec. V.When the ascent is stopped, the cable continues to oscillate

about a new, shifted equilibrium, as shown in Fig. 16b. The stability

of the system is confirmed by its eigenvalues shown in Fig. 16d, in

which the real parts of the eigenvalues always remain negative or zero

throughout the ascent. We see large negative real parts of the second

and third eigenvalues near t � 0 in Fig. 16d that rapidly go to zero.

The presence of these negative real parts in λ2 and λ3 indicates the fast
decay of energies in the second and third eigenmodes initially.
In the second case study, we investigate the deployment of the

same aerostat following an ascent profile, as in the previous case

study, but now up to an elevation of 12 km, which is greater than the

nominal safe elevation limit for Fb � 500 kN; see Fig. 10b. We

achieve this elevation by following an ascent profile that is

qualitatively similar to Fig. 16c but now has a constant rate of ascent

v � 1.2 ms−1 up to t � 10;000 s; after which, v reduces to zero as in
Fig. 16c. The air flow profile is taken to be the same as in Fig. 16a.
The time series of the end deflection (aerostat) is shown in Fig. 17a.

We see that the aerostat oscillates about an equilibriumposition, shifted

by air flow, up to t < 8250 s. Then, there is a sudden change in the

dynamics of the ascending cable, and its amplitude starts growing

exponentially. This corresponds to the time t� atwhich the eigenvalues
of the system begin acquiring positive real parts; see Fig. 17b. We

observe that the system destabilizes during its ascent, i.e., before the

target elevation of 12km is achieved.Thismatches the predictionof the

deployment chart of Fig. 10b that suggests 10 km as the safe

deployment limit when Fb � 500 kN. This confirms again the utility

of developing such deployment charts.

a) b)

c) d)
Fig. 16 Case study I: a) steady air flowprofile, b) time series response for the end-tip displacement, c) temporal profile for the ascent rate, andd) evolution
of first three eigenvalues in time.
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VIII. Conclusions

In this paper, the dynamics of lengthening/shortening cables with
end mass was investigated. First, an asymptotic analysis of the free
vibrations of slowly ascending/descending aerostats was presented.
The asymptotics matched well with the computationally obtained
evolution of amplitude in time, and it matched qualitatively with the
evolutions of the natural frequency and energy of the first eigenmode.
Then, in Sec. IV, the instability in ascending aerostats was

investigated, and it was explained through a quasi-static eigenvalue
analysis. Deployment charts based on this stability analysis were
developed. These charts readily helped to estimate the maximum
safely attainable elevation for a given rate of deployment. Instability
in the descending aerostats was then investigated in Sec. V. The
current quasi-static analysis successfully predicted flutter instability
in descending aerostats, especially in the limit of l → 0.
In Sec. VI, the forced vibration of ascending/descending aerostat

systems in the presence of air flow through computations was
investigated. The aerostat was modeled as a sphere and employed a
simplemodel for the aerodynamic forces on the aerostat.The frequency
domain response matched qualitatively with past experiments and
underlined the tendency of strong resonance when the air frequency
matched the evolving first natural frequency of the system at any point
of time during ascent/descent.
Finally, the two case studies of aerostat systems concluded the

paper, within which the stability analysis of previous sections was
used. To make contact with practical scenarios, the aerostat to be
deployed at nonconstant rates was considered. The current computed
results were in good agreement with the limits obtained from
deployment charts by considering the rate of deployment to be
constant, as well as in the absence of air flow. This underlined the
utility of developing deployment charts.
This work can be extended further for axially lengthening/

shortening beams without much modification. A nonlinear elastic
model for the cable can also be used.A small displacement assumption
may not hold for highly flexible cables. Geometrically exact modeling
of the heavy cable will help us to incorporate the large displacements
and rotations. The current work and the proposed extensions will help
create deployment charts predicated on a detailed stability analysis.
These, in turn, will help develop predictive and optimized deployment
strategies for aerostat systems.

Appendix: Finite Element Analysis

We solve Eq. (11) along with boundary conditions of Eq. (7)
through the finite element method, for which the details are in the
supplementary material. The main steps involve 1) expressing ~y in
terms of a spatial weighting function and a temporal component as
~y � W�ξ�q�t�, 2) forming the weighted residual and integrating by
parts, and 3) following Galerkin’s method for spatial discretization.
In our FE analysis, we assume linear interpolating functions for a

two-node cable element ij. Through this,we obtain the elementmass,
gyroscopic, and stiffness matrices for an element ij in index notation
as (α; β � 1; 2)

M�ij�
αβ � l

Z
ζj

ζi

NαNβ dζ (A1)

G�ij�
αβ � 2_l

Z
ζj

ζi

�1 − ζ�N 0
αNβ dζ (A2)

and

K�ij�
αβ � �l

Z
ζj

ζi

N 0
αNβ dζ −

_l2

l

Z
ζj

ζi

�1 − ζ�2N 0
αN

0
β dζ

�
Z

ζj

ζi

�
1

l
− ~m

�l

l
−
�
1

~F
� �l

�
�1 − ζ�

�
N 0

αN
0
β dζ (A3)

respectively, where

Ni � 1 −
ζ − ζi
he

and Nj �
ζ − ζi
he

for all ζi ≤ ζ ≤ ζj, and Ni � Nj � 0 otherwise. The preceding

element matrices are then assembled to form the global mass M��t�,
gyroscopic G��t�, and stiffness K��t� matrices, respectively. The
boundary terms cancel each other at the time of assembly, except for
the following contribution to M��t�

M�n; n� � M�n; n� � ~m (A4)

where n is the number of nodes, and h is the length of the last element
of the cable, which is connected to the aerostat. Other boundary terms
either vanish or get canceled at ζ � 1. We finally obtain the spatially
discretized form of Eq. (11) as

M��t� �q��t� �G��t� _q��t� �K��t�q��t� � 0 (A5)

The preceding equation is solved by an explicit Newmark time-
marching algorithm toobtain temporal evolutionsqi�t�. Equation (A5)
represents a polynomial eigenvalue problem, which governs the
dynamics of the tethered aerostat system.

Acknowledgments

D. Mukherjee acknowledges the Ministry of Human Resources
and Development, Government of India, for financial support during
his M.Tech. program at Indian Institute of Technology (IIT) Kanpur

a) b)
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