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Abstract We investigate indentation by a smooth, rigid indenter of a two-dimensional half-
space comprised of periodically arranged linear-elastic layers with different constitutive re-
sponses. Identifying the half-space’s material parameters as periodic functions in space,
we utilize the theory of periodic homogenization to approximate the layered heterogeneous
material by a linear-elastic, homogeneous, but anisotropic medium. This approximation be-
comes exact as the layer thickness becomes infinitesimal. In this way, we reduce the origi-
nal problem to the indentation of an anisotropic, homogeneous, linear-elastic half-space by a
smooth, rigid indenter. The latter is solved analytically by formulating and resolving the cor-
responding matrix Riemann–Hilbert boundary-value problem in complex analysis. Thus, we
obtain an approximate, but analytical solution for the indentation of a layered heterogeneous
medium. We then compare this solution with finite element computations of the indentation
on the original layered, heterogenous half-space. We conclude that (a) the contact pressure
on the layered, heterogenous half-space is well approximated by that obtained through ho-
mogenization, and the approximation improves as the layer thickness is decreased, or if the
indentation force is increased; (b) the upper bound of the difference between the two contact
pressures depends only upon the ratio of the Young’s moduli of the two materials constitut-
ing the heterogenous medium and their Poisson’s ratio; and (c) the average variation of the
discontinuous von Mises stress in the layered half-space is well approximated by the one
found in the homogenized half-space. The approach presented here can be utilized for a di-
verse array of indentation and contact problems of finely mixed heterogeneous media, and
is also amenable to systematic improvements.
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1 Introduction

Indentation in elastic materials is a classical and important engineering problem. Commonly
occurring phenomena such as rail wheels on a railroad, penetration of a syringe in a body tis-
sue, are examples of indentation processes. Mechanical properties of materials are routinely
measured using instrumented indentation machines [1, 2]. Indentation is also prevalent in
various manufacturing processes, such as in forming.

Closed-form solutions for primary variables of interest, such as the pressure in the con-
tact region or the stress field in the indented material are known for the indentation of an
isotropic elastic half-space [3, 4]. Green and Zerna [5] investigated the plane-strain inden-
tation of an anisotropic elastic half-space and provided analytical expressions of the stress
field, but follow a rather involved process. Fan and Keer [6] reconsidered the work of [5] and
simplified it utilizing the compact formalism of Stroh [7]; however they did not solve the
indentation problem. More importantly, all such investigations have been carried out only
for homogeneous elastic media. At the same time, the importance of heterogeneous media
is well-known in engineering applications: composites, soil, and tissue, for example, are all
heterogeneous. Hence, there is a need to investigate indentation into heterogeneous elastic
materials.

Phrasing linear-elastic problems in the displacement formulation involves second-order
linear elliptic partial differential equations (PDEs), which can be solved exactly for very
few systems with simple constitutive description, loading conditions and geometry. In these
PDEs, and in the boundary data relevant to the system for a heterogeneous medium, the
material coefficients vary with space, which further complicates the problem.

Here, we study indentation of a layered medium, one of the simplest examples of het-
erogeneous media. Layered media abound in nature and industrial applications. Many such
instances of layered media and the typical loads that they carry can be considered as consti-
tuting problems of indentation, for example, ceramics used in space shuttles, and the load
acting on them during atmospheric re-entry, vehicle tyre on a road, bone interacting with
articular cartilage and woodpecker pecking a tree made of different layers of wood etc.
Mammalian skin, cell wall, artery wall are all layered media and indentation is often used to
find their elastic properties.

In this work, we investigate indentation of a half-space consisting of layers of two
isotropic elastic materials stacked periodically atop each other. Analytical investigation of
this problem is hard. However progress may be achieved if we consider layers of infinites-
imal thickness. In this limit, we use the results of the theory of periodic homogenization to
show that the elastic behavior of this layered medium, when homogenized, is exactly the
same as that of an anisotropic, homogeneous elastic material, the indentation problem on
which may be solved exactly. The main utility of such an analysis lies in the investigation
of layered media with layers of small thickness. At the same time, the numerical investiga-
tion of such finely-layered media is made difficult by the rapid fluctuations in the material
coefficients. However, as is shown in this work, the relevant physical quantities can be very
well approximated by those of the limiting ‘homogenized’ material.
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Homogenization is known to work best in the bulk. However, in indentation problems we
are primarily interested in surface quantities, such as the pressure profile under the indenter.
Thus, we also carry out the numerical simulation of indentation of finely-layered media
to investigate the convergence of pressure under the indenter to that of the homogenized
material, while changing several relevant physical parameters controlling the problem: the
force on the indenter, radius of the indenter, Young’s moduli of the materials constituting
the layered medium, and the thickness of its layers.

The outline of the article is as follows. In Sect. 2, the contact problem of a general
medium is formulated, which is then specialized to a planar indentation boundary value
problem. In Sect. 3, we consider the plane strain indentation problem of a homogeneous,
anisotropic half-space and find the closed-form expressions for contact pressure and the
stress fields within the indented material. We then consider the indentation on a layered
medium in Sect. 4. Assuming a finely-layered medium, we proceed by homogenizing the
medium. We find the closed-form expressions for the components of the stiffness tensor of
the homogenized material and observe that the homogenized material is anisotropic, specifi-
cally transversely isotropic. We the utilize results from Sect. 3 to obtain contact pressure and
stress fields in closed-form on the homogenized material for a layered half-space compris-
ing layers of two isotropic, homogeneous materials of equal thickness in an infinite periodic
arrangement. Finally, in Sect. 5, results for indentation of layered media, obtained through
a finite element (FE) analysis, are discussed and compared with our analytical results. It is
shown, by defining an appropriate error variable, that the pressure profile under the indenter
in the layered medium converges to that of the homogenized material as the layer thickness
in the layered medium is decreased, or if the force on the indenter is increased. It is also
shown that the upper bound of this error variable depends only upon the ratio of the Young’s
moduli of the two constituent materials and their Poisson’s ratio. We also investigate the
maximum of the von Mises stress in the layered media, which is important from the point
of view of applications. This is then followed by conclusions in Sect. 6.

We will be presenting subsequent development beginning with a three-dimensional set-
ting, even though we will quickly specialize to a two-dimensional problem. Similarly, the
reader may find some well-known results/facts laid out in some detail. Our reasons for doing
so are two-fold: (a) to prepare grounds for seamless extension to three-dimensional prob-
lems, and (b) to clearly identify typical assumptions which will be important whenever we
seek to improve the errors inherent in applying homogenization techniques near boundaries.

2 Indentation Problem: General Formulation for a Smooth Indenter

We begin by considering the indentation of a three-dimensional, linear-elastic, heteroge-
neous body, occupying the half-space Ω := R × (0,∞) × R by a rigid, smooth, circular
cylindrical indenter with radius R. Figures 1a and b illustrate the body after and before in-
dentation, respectively. Both Figs. 1a and b are cross-sections of the system in the x1-x2

plane. Let O denote the origin in Fig. 1b. We assume that the line force F pressing upon
the indenter passes through the indenter’s central axis and the direction of F is along the
x2-axis. Given this loading condition, the indenter contacts the body over a contact region
Γ1 := (−L,L) × {0} × R, for some length L > 0 of the contact region. We assume that a
priori, either the contact length 2L or the loading F is known. We take the body forces to be
zero and the strains to be small. We shall impose a mixed boundary condition on Γ1 in terms
of the stress and the partial derivatives of the vertical displacement along the x2-axis. The
stress condition on Γ1 is obtained from a consideration of zero friction under the smooth
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Fig. 1 Indentation on a three-dimensional half-space Ω viewed along the x3-axis. (a) Sketch of the physical
problem. (b) The mathematical model assuming that the material is linear-elastic and the strains are small, so
that the boundary conditions are applied upon the undeformed boundary.

indenter, because of which the traction components along the x1- and x3-axes are zero. The
displacement condition on Γ1 results by virtue of the indenter being rigid, so that the mate-
rial on Γ1 takes the shape of indenter. Thus, if v(x1, x3) = (v1(x1, x3), v2(x1, x3), v3(x1, x3))

denotes the displacement of Γ1, ∂v2/∂x1 and ∂v2/∂x3 are then known on Γ1. Because
Γ2 := ∂Ω \ Γ1

1 is a free boundary, we impose zero traction on Γ2 in all three directions.
The mathematical formulation of indentation is hence provided by the following boundary
value problem in displacement formulation, using Einstein’s summation convention:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xj

(

aijkh

∂uk

∂xh

)

= 0 in Ω, i = 1,2,3,

∂u
∂xi

· e2 = ∂v2

∂xi

, aijkh

∂uk

∂xh

nj = 0 on Γ1, i = 1,3,

aijkh

∂uk

∂xh

nj = 0 on Γ2, i = 1,2,3,

(1)

where u(x) = (u1(x), u2(x), u3(x)) is the unknown three-dimensional displacement, ∂v2/∂x1

and ∂v2/∂x3 are known on Γ1, aijkh(x) are the components of a fourth-order stiffness tensor
that characterizes the material’s linear-elastic response and may vary spatially, the boundary
of Ω is ∂Ω = Γ1

⋃
Γ2 = R× {0} ×R, and n(x) = (n1(x), n2(x), n3(x)) is the unit outward

normal on the boundary ∂Ω . The components εij (x) = εji(x) of the strain tensor ε are
found from the displacement field u by

εij (x) = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)

, (2)

while the components σij (x) = σji(x) of the stress tensor are related to those of the strain
tensor by the generalized Hooke’s law:

σij (x) = aijkh(x) εkh(x). (3)

The stiffness tensor is assumed positive-definite and satisfies

aijkh(x) = ajikh(x) = aijhk(x) = akhij (x). (4)

1Given two sets A and B , the set A \ B := {x ∈ A | x /∈ B} is the relative complement of B in A.
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We wish to compute the pressure under the indenter, i.e. on Γ1, and the von Mises stress
in Ω . Pressure on Γ1 is given by p(x1, x3) := −σ22(x1,0, x3). The von Mises stress, denoted
by σVM, is a scalar defined by

σVM(x) := 1√
2

√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6(σ 2
12 + σ 2

23 + σ 2
13). (5)

The maximum value of σVM is often utilized to predict the onset of plastic behavior in
ductile materials [8]. It has not been possible to solve the indentation problem (1) for a
general choice of aijkh to obtain closed-form expressions of p(x1, x3) and σVM(x). To make
progress, we now make the following two assumptions on (1):
(H1) Material undergoes plane strain deformation, which assumes that the displacement
field u(x) satisfies:

u1(x) = u1(x1, x2), u2(x) = u2(x1, x2) and u3(x) = 0, (6)

which, using (2), implies εij (x) = εij (x1, x2) for i, j = 1,2, and εk3(x) = 0 for k = 1,2,3.
The displacement of Γ1 also simplifies as v(x1, x3) = v(x1) = (v1(x1), v2(x1),0).
(H2) To admit plane strain the elastic coefficients aijkh of the material must satisfy

a1113 = a1123 = a2213 = a2223 = a1213 = a1223 = 0,

(7)
and aij33(x) = aij33(x1, x2), i, j = 1,2.

The assumption (7) is not too restrictive, because many physical materials, including mon-
oclinic materials with the symmetry plane at x3 = 0 satisfy it in general. In particular, the
layered media, which we study in Sect. 4, also satisfy (7).

Employing (2) and (3), along with assumptions (6) and (7), we obtain σij (x) = σij (x1, x2)

for i, j = 1,2 and σk3(x) = 0 for k = 1,2 and also p(x1, x3) = p(x1). Thus, from (5), we
obtain

σVM(x) = σVM(x1, x2) = 1√
2

√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6σ 2
12. (8)

With (6) and (7), (1) turns into the following, essentially two-dimensional problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xj

(

aijkh

∂uk

∂xh

)

= 0 in Ω, i = 1,2, (9a)

∂u
∂x1

· e2 = dv2

dx1
on Γ1, (9b)

a1jkh

∂uk

∂xh

nj = 0 on Γ1, (9c)

aijkh

∂uk

∂xh

nj = 0 on Γ2, i = 1,2. (9d)

For a homogeneous, isotropic half-space Ω , Muskhelishvili [3] provides a general
method to find the components of the stress tensor σij (x1, x2), in particular p(x1), for an
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arbitrarily shaped indenter. For future use, we quickly recall the result for a parabolic in-
denter with the profile x2 = −x2

1/(2R). For a homogeneous, isotropic material, aijkh’s are
constant functions given by

aijkh = λδij δkh + μ(δihδjk + δikδjh), (10)

where λ ≥ 0 and μ > 0 are Lamé’s parameters and δij is the Kronecker delta symbol.
Clearly, (10) satisfies the assumptions (7). Then for a homogeneous, isotropic half-space
Ω , the pressure profile is provided by

p(x1) = 1

R

4μ

χ + 1

√

L2 − x2
1 = 1

R

E

2(1 − ν2)

√

L2 − x2
1 on Γ1, (11)

where the Young’s modulus E and Poisson’s ratio ν of the isotropic material are

E = μ(3λ + 2μ)

λ + μ
, ν = λ

2(λ + μ)
and χ = λ + 3μ

λ + μ
. (12)

A circular indenter with radius R can be approximated by a parabolic indenter on Γ1, i.e. on
−L < x1 < L if we assume that R � L, as we will do. Stress components are found using a
complex-valued function h : C \ {z ∈C | x2 > 0} → C as

σ22(x1, x2) − i σ21(x1, x2) = h(z) − h(z̄) + (z − z̄)
dh

dz
(z),

and (13)σ11(x1, x2) + σ22(x1, x2) = 2[h(z) + h(z)],
where

h(z) = 2μiz

R(χ + 1)
+ 2μ

R(χ + 1)

√
L2 − z2, (14)

z = x1 + ix2 is a complex variable and the overbar ‘ ¯ ’ indicates the complex conjugate. We
find σ33(x1, x2) by substituting (4) in (3) and utilizing (6), (10) and (12) to obtain

σ33 = ν(σ11 + σ22). (15)

Subsequently, we may compute σVM from (8).
In this article, we are interested in the plane strain indentation of a heterogeneous, linear-

elastic, half-space Ω . For a heterogeneous medium aijkh vary spatially. In general, even in
the planar case, for heterogeneous media, there exist no closed-form expressions for p(x1)

and σVM(x). Therefore, as a first step, we consider the case of planar, layered media. For a
finely-layered medium, we will utilize homogenization techniques in Sect. 4 to convert the
heterogeneous, layered medium into a homogeneous, but anisotropic, material. Once that is
done, we will have to investigate the plane strain indentation of a homogeneous, anisotropic
material, which we do so next.

3 Plane Strain Indentation of a Homogeneous, Anisotropic Half-Space

We now investigate plane strain indentation of a homogeneous, anisotropic half-space sat-
isfying (7). For a homogeneous, anisotropic material aijkh’s are constant functions, but two
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parameters such as λ and μ, are no longer sufficient, complicating the analysis of the inden-
tation problem. Fan and Keer [6] investigate the plane-strain indentation of a homogeneous,
anisotropic half-space utilizing the compact formalism of Stroh [7], and then employing an
analytic function continuation approach to arrive at a matrix Riemann–Hilbert (RH) prob-
lem. However, they do not motivate their ansatz for the displacement field that they assume.
Moreover, they stop short of actually solving the RH problem, so that the indentation prob-
lem remains unsolved. In this section, we follow the formulation of [6], but present better
motivated and more transparent approach by starting with the equilibrium equations (9a).
We eventually arrive at the corresponding matrix RH problem, which is then solved to ob-
tain the closed-form expressions for the contact pressure p(x1), stress field σ(x) and the von
Mises stress σVM(x) inside the anisotropic half-space.

Under plane strain conditions (6), (9a) may be written in terms of the stress components
as

∂σ11

∂x1
+ ∂σ12

∂x2
= 0 and

∂σ21

∂x1
+ ∂σ22

∂x2
= 0 in Ω. (16)

We introduce scalar fields φ1(x1, x2) and φ2(x1, x2) such that

σi1 = −∂φi

∂x2
and σi2 = ∂φi

∂x1
for i = 1,2, (17)

so that (16) are automatically satisfied. Invoking (2) and (3) to replace the stress components,
we write (17) in terms of the displacement as

Q

⎛

⎜
⎜
⎝

∂u1

∂x1

∂u2

∂x1

⎞

⎟
⎟
⎠+ R

⎛

⎜
⎜
⎝

∂u1

∂x2

∂u2

∂x2

⎞

⎟
⎟
⎠= −

⎛

⎜
⎜
⎝

∂φ1

∂x2

∂φ2

∂x2

⎞

⎟
⎟
⎠ and RT

⎛

⎜
⎜
⎝

∂u1

∂x1

∂u2

∂x1

⎞

⎟
⎟
⎠+ W

⎛

⎜
⎜
⎝

∂u1

∂x2

∂u2

∂x2

⎞

⎟
⎟
⎠=

⎛

⎜
⎜
⎝

∂φ1

∂x1

∂φ2

∂x1

⎞

⎟
⎟
⎠ ,

(18)

where

Q := (ai1k1), R := (ai1k2) and W := (ai2k2) (19)

are 2 × 2 matrices and the superscript ‘T ’ denotes the transpose of a matrix. Note that Q
and W are symmetric matrices. We introduce

S1 :=
[−RT I

−Q 0

]

, S2 :=
[

W 0
R I

]

and Y :=

⎛

⎜
⎜
⎝

u1

u2

φ1

φ2

⎞

⎟
⎟
⎠ , (20)

where I and 0 are the 2 × 2 identity and zero matrices, respectively, and rewrite (18) in the
form of a coupled system of first-order partial differential equations as

S1
∂Y
∂x1

= S2
∂Y
∂x2

. (21)

Utilizing the positive-definiteness of the stiffness tensor, we find that Q and W are also
positive-definite, hence nonsingular. Therefore, both S1

−1 and S2
−1 exist, and (21) may be
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written as

S2
−1S1

∂Y
∂x1

= ∂Y
∂x2

. (22)

We now wish to diagonalize S2
−1S1 over the field of complex numbers C and set

S2
−1S1 = E�E−1, (23)

where � = diag(Λ1,Λ2, Λ̄1, Λ̄2) is the diagonal matrix formed by the four eigenvalues and
the matrix E is obtained by having the eigenvectors corresponding to the four eigenvalues as
its column vectors. Because S1 and S2 depend only upon material coefficients aijkh, which
are constant functions, therefore E and � also are constant functions. Thus, we may rewrite
(22) as

�
∂(E−1Y)

∂x1
= ∂(E−1Y)

∂x2
,

which is a system of constant coefficient linear first-order PDEs. This equation has solutions
of the form

Y =

⎛

⎜
⎜
⎝

u1

u2

φ1

φ2

⎞

⎟
⎟
⎠= E

⎛

⎜
⎜
⎝

f1(z1)

f2(z2)

f3(z̄1)

f4(z̄2)

⎞

⎟
⎟
⎠ , (24)

where fi(x1 + Λix2), for i = 1,2, are holomorphic functions of the complex variables zi :=
x1 + Λix2 and fi+2(x1 + Λ̄ix2), for i = 1,2, are holomorphic functions of the variable
z̄i = x1 + Λ̄ix2; here x1 ∈ R and x2 > 0. We rewrite E in the block matrix notation, using
two 2 × 2 matrices A and B, as

E =
[

A Ā
B B̄

]

, (25)

which follows from the fact that the eigenvectors making up E’s columns are complex con-
jugates. Clearly, if A = (Aij ) and B = (Bij ) then, utilizing (19) and the diagonalization of
S2

−1S1, we must have [9]

Bij =
2∑

k=1

(ai2k1 + Λjai2k2)Akj . (26)

Because u(x1, x2) is real, we further obtain from (24) and (25) that fi+2(z̄i) = fi(zi) for
i = 1,2, which then provides the following general solution:

u(x1, x2) = 2Re

{

A

(
f1(z1)

f2(z2)

)}

and

(
φ1

φ2

)

(x1, x2) = 2Re

{

B

(
f1(z1)

f2(z2)

)}

, (27)
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where Re {·} denotes the real part of the complex expression inside the braces. Utilizing (17)
and (27) provides the following expressions of the stress fields:

σi2(x1, x2) = 2Re

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B

⎛

⎜
⎜
⎜
⎝

df1

dz1
(z1)

df2

dz2
(z2)

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

and σi1(x1, x2) = −2Re

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

B

⎛

⎜
⎜
⎜
⎝

Λ1
df1

dz1
(z1)

Λ2
df2

dz2
(z2)

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(28)

Now employing (27), the displacement in the contact region Γ1 may be written as

A

(
f1(x1)

f2(x1)

)

+ Ā

(
f1(x1)

f2(x1)

)

=
(

v1(x1)

v2(x1)

)

, x1 ∈ Γ1. (29)

Similarly, invoking (9c) and (28), the surface traction on Γ1 is found to be

B

⎛

⎜
⎜
⎝

df1

dz1
(z1)

df2

dz2
(z2)

⎞

⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
x2=0

+ B̄

⎛

⎜
⎜
⎜
⎝

df1

dz1
(z1)

df2

dz2
(z2)

⎞

⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
x2=0

=
(

0

σ22(x1,0)

)

, x1 ∈ Γ1. (30)

We now introduce a function h :C \ {z ∈C | x2 = 0} →C
2×1 as follows:

h(z) =
(

h1(z)

h2(z)

)

:=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

⎛

⎜
⎜
⎝

df1

dz1
(z)

df2

dz2
(z)

⎞

⎟
⎟
⎠ , z ∈ S+ := {z ∈ C | x2 > 0},

−B̄

⎛

⎜
⎜
⎜
⎝

df1

dz1
(z̄)

df2

dz2
(z̄)

⎞

⎟
⎟
⎟
⎠

, z ∈ S− := {z ∈ C | x2 < 0},

(31)

where z = x1 + ix2 is the complex variable locating a point in the elastic half-space’s interior.
Clearly, h is a holomorphic function. Using the traction free condition (9d) on Γ2, along with
(28) and (31), we observe that h+(x1) = h−(x1) on Γ2, where h+(x1) = lim

z→x1∈Γ1
⋃

Γ2,

z∈S+
h(z) and

h−(x1) = lim
z→x1∈Γ1

⋃
Γ2,

z∈S−
h(z). Therefore, the values of h(z) in S+ and S− can be considered as

the analytic continuation of one another through Γ2. Hence, we regard h(z) as a holomorphic
function in C \ Γ1. Such a function is called a sectionally analytic function. Introducing

t(x1) =
(

0

t2(x1)

)

:=
(

0

σ22(x1,0)

)

, (32)

we write (30) as

h+(x1) − h−(x1) = t(x1), x1 ∈ Γ1. (33)
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We wish to find a sectionally analytic function h(z) which satisfies (33). Such a problem
is called a Riemann–Hilbert (RH) problem (see [3, 10]). Utilising the Sokhotski–Plemelj
formula [3, 10] in (33), we immediately obtain

h±(x1) = 1

2

⎛

⎝±t(x1) + 1

πi

∫

−
�1

t(ξ)

ξ − x1
dξ

⎞

⎠ , x1 ∈ Γ1 (34)

and h(z) = 1

2πi

∫

�1

t(ξ)

ξ − z
dξ, z ∈C \ Γ1, (35)

where
∫− is the Cauchy principal integral. Because h±(x1) are given in terms of the unknown

t(x1) in (34), we need one more equation, which we obtain from (29). Stroh [7], invoking
the positive-definiteness of the stiffness tensor, showed that the matrices A and B are non-
singular if Λ1 �= Λ2; in particular B−1 exists. Taking the derivative of (29) with respect to
x1, then using (31) and B−1 = (B̄)−1, we obtain

AB−1h+(x1) − AB−1h−(x1) = v′(x1), x1 ∈ Γ1, (36)

where v′(x1) =
(

dv1/dx1

dv2/dx1

)

. Eliminating h−(x1) from (33), (36) and defining M := iAB−1,

it follows that

(M + M)h+(x1) = Mt(x1) + iv′(x1), x1 ∈ Γ1. (37)

Employing (34) in (37) then provides

M + M
2πi

L∫

−
−L

t(ξ)

ξ − x1
dξ + M − M

2
t(x1) = iv′(x1). (38)

The matrix M plays an important role in the study of anisotropic materials. It was first
introduced by Ingebrigtsen and Tonning in [11]. Its inverse M−1 is called the impedance
tensor. It provides a convenient relationship B = iM−1A between the matrices A and B,
which are directly related to the displacement field at a point and traction on a plane passing
though that point, as may be seen, for example, in (29) and (30).

For a parabolic indenter with profile x2 = −x2
1/(2R), we obtain dv2/dx1 = −x1/R. We

expand the second component of the vector equation (38) to find

M22 + M22

2πi

L∫

−
−L

t2(ξ)

ξ − x1
dξ + M22 − M22

2
t2(x1) = −i

x1

R
. (39)

It can be shown that both M and M−1 are positive-definite Hermitian matrices (see [9],
Chap. 6), so that M22 = M22 > 0. Therefore, from (39), we obtain

M22

πi

L∫

−
−L

t2(ξ)

ξ − x1
dξ = −i

x1

R
, (40)
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which is a singular integral equation with a Cauchy kernel (see [10]). We may solve (40) to
obtain the expression (see [3], Chap. 10) for the traction t2(x1) = σ22(x1,0) = −p(x1) in the
contact region as

p(x1) = 1

R M22

√

L2 − x2
1 on Γ1. (41)

Having obtained t2(x1), we note that v1(x1) can be easily found using the first component of
(38) and the condition v1(0) = 0, which follows, without loss of generality, from the mirror
symmetry of the configuration about the x2-axis.

To find σVM(x1, x2) from (8), we first solve for σ11, σ12 and σ22 using the RH problem
formulated in (33). We write (33) in its component form to obtain

h+
1 (x1) − h−

1 (x1) = 0 and h+
2 (x1) − h−

2 (x1) = t2(x1) = − 1

R M22

√

L2 − x2
1 , x1 ∈ Γ1.

(42)

We solve the scalar RH problems (42), using (35), to obtain

h1(z) = 0, z ∈C and h2(z) = − 1

2πi R M22

∫ L

−L

√
L2 − ξ 2

ξ − z
dξ, z ∈ C \ Γ1. (43)

Using (31) and (43), we now obtain

⎛

⎜
⎜
⎝

df1(z)

dz

df2(z)

dz

⎞

⎟
⎟
⎠= B−1h(z) =

(
B̂12

B̂22

)

h2(z) in S+, where B̂ij

are the components of B−1. Utilizing relations (28), we then find stress fields at a general
point in the homogeneous, anisotropic, linear-elastic half-space as

σ21(x1, x2) = 2Re[B11B̂12h2(z1) + B12B̂22h2(z2)],
σ22(x1, x2) = 2Re[B21B̂12h2(z1) + B22B̂22h2(z2)], (44)

and σ11(x1, x2) = 2Re[B11Λ1B̂12h2(z1) + B12Λ2B̂22h2(z2)].

Now, using (3) and (4) in the plane strain condition (6), we find that

σ33(x1, x2) = (a3311 a3322 a3312
)

⎡

⎣
a1111 a1122 a1112

a1122 a2222 a2212

a1112 a2212 a1212

⎤

⎦

−1⎛

⎝
σ11

σ22

σ12

⎞

⎠ , (45)

which, along with (44) and (8), immediately provides σVM(x).
When S2

−1S1 is not diagonalizable, which includes the case of an isotropic material,
an extension of the method above to find M is given in Appendix A. We now return to
the plane strain indentation of layered media. For a finely-layered medium, we use results
from homogenization and obtain an anisotropic homogenized material. On the anisotropic
half-space the indentation problem may be solved using results from this section.
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Fig. 2 (a) Indentation by a cylindrical indenter of layered half-space with materials A and B stacked as
shown. The configuration at any cross-section at x3 is as shown. (b) The reference cell Y ; see the main text
for details.

4 Indentation on a Layered Medium

4.1 Formulation of the Boundary Value Problem

In a layered medium, in general, two or more different materials are stacked on top of each
other in layers that may be repeated in any manner. In this work, we consider layered me-
dia in which two different isotropic materials are stacked one after the other in an infinite
periodic arrangement, as illustrated in Fig. 2a. We identify material of the topmost layer as
‘material A’ and the next one as ‘material B’. The top two layers with collective thickness ε

form a unit, which is then repeated. Thus, the degree of heterogeneity of such layered media
may be characterized by a single parameter ε. Let the volume fraction of material A be α,
so that the volume fraction of material B is 1 − α. Then, in any unit of ε thickness, material
A has thickness α ε, and material B’s thickness is (1 − α)ε, so that the thickness ratio is
α/(1 − α), which is independent of ε.

We introduce the periodic framework for the layered media by defining a reference
cell Y := (0, l1) × (0,1) × (0, l3) for some l1 > 0 and l3 > 0; see Fig. 2b. We define cell
εY := (0, l1) × (0, ε) × (0, l3). Let the components of the stiffness tensor be functions de-
fined as aijkh : Y → R for i, j, k,h = 1,2,3. For a layered medium, let aε

ijkh : εY → R for
i, j, k,h = 1,2,3. Set aε

ijkh(x) = aε
ijkh(x1, x2, x3) = aε

ijkh(x2) = aijkh(x2/ε). We then extend
aε

ijkh periodically to the entire domain Ω to make aε
ijkh : Ω → R for i, j, k,h = 1,2,3.

With the above definitions, (1) may then be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xj

(

aε
ijkh

∂uε
k

∂xh

)

= 0 in Ω, i = 1,2,3,

∂uε

∂xi

· e2 = ∂v2

∂xi

, aε
ijkh

∂uε
k

∂xh

nj = 0 on Γ1, i = 1,3,

aε
ijkh

∂uε
k

∂xh

nj = 0 on Γ2, i = 1,2,3,

(46)

where uε(x) = (uε
1(x), uε

2(x), uε
3(x)) : Ω →R

3 denotes the unknown three-dimensional dis-
placement field in the layered medium.
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Accurate FE analysis for finely-layered media, i.e. layered media with very small ε is
computationally expensive, as the mesh size becomes correspondingly small. However, for
a finely-layered medium, we can proceed by homogenizing the medium. From the theory of
periodic homogenization [12, 13], we are led to a consideration of the following boundary
value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂xj

(

a0
ijkh

∂u0
k

∂xh

)

= 0 in Ω, i = 1,2,3,

∂u0

∂xi

· e2 = ∂v2

∂xi

, a0
ijkh

∂u0
k

∂xh

nj = 0 on Γ1, i = 1,3,

a0
ijkh

∂u0
k

∂xh

nj = 0 on Γ2, i = 1,2,3,

(47)

which is similar to (46), except that the components of the effective stiffness tensor
a0

ijkh are now the constant functions representing the homogenized material, and u0(x) =
(u0

1(x), u0
2(x), u0

3(x)) : Ω → R
3 denotes the three-dimensional displacement field of the ho-

mogenized material. We now proceed to find the components a0
ijkh.

4.2 Components of the Effective Stiffness Tensor

The components of the stiffness tensor a0
ijkh in (47) are given by [12]

a0
ijkh = 1

|Y |
∫

Y

aijkh(x) dx − 1

|Y |
∫

Y

aij lm(x)
∂χkh

l

∂xm

dx, (48)

where |Y | = l1l3 is the Lebesgue measure of Y and χ lm = (χlm
k )1≤k≤3 : Y → R

3 for l,m =
1,2,3 is a vector-valued function, which is a solution of the following periodic auxiliary
problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂

∂xj

(

aijkh

∂χlm
k

∂xh

)

= ∂aij lm

∂xj

in Y,

χlm
k is Y -periodic,

MY (χlm
k ) = 0,

(49)

for 1 ≤ i, j, k,h, l,m ≤ 3 and

MY (χlm
k ) = 1

|Y |
∫

Ω

χlm
k (y)dy

is the mean value of χlm
k over Y . Like aijkh, the tensor a0

ijkh is positive-definite and obeys
the same symmetry relations [12].

We first solve the auxiliary problem (49) to obtain χ lm (see Appendix B). Using (48),
we then compute the components of the stiffness tensor of the homogenized material. We
obtain (see Appendix C):

a0
1111 = (λA + 2μA)α + (λB + 2μB)(1 − α)

− (λA − λB)2

(λA + 2μA)(1 − α) + (λB + 2μB)α
α(1 − α),
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a0
1122 = λAα + λB(1 − α) − (λA − λB) [(λA + 2μA) − (λB + 2μB)]

(λA + 2μA)(1 − α) + (λB + 2μB)α
α(1 − α),

a0
1133 = λAα + λB(1 − α) − (λA − λB)2

(λA + 2μA)(1 − α) + (λB + 2μB)α
α(1 − α),

a0
2222 = (λA + 2μA)α + (λB + 2μB)(1 − α) (50)

− [(λA + 2μA) − (λB + 2μB)]2

(λA + 2μA)(1 − α) + (λB + 2μB)α
α(1 − α),

a0
2323 = μAα + μB(1 − α) − (μA − μB)2

μA(1 − α) + μBα
α(1 − α),

a0
1313 = μAα + μB(1 − α),

a0
2233 = a0

1122, a0
3333 = a0

1111, and a0
1212 = a0

2323.

Many of the other coefficients may be computed using symmetry relations of a0
ijkh, e.g.

a0
2211 = a0

1122, or a0
3113 = a0

1313. All other coefficients are zero. As a rule, all coefficients
having any two indices equal and the other two unequal are zero, while coefficients with
two pairs of equal indices are non-zero, e.g. a0

1321 = 0 and a0
1223 = 0, but a0

1331 �= 0.
Because a0

1111 �= a0
2222, the homogenized material is clearly anisotropic. We note from

(50) that only five different a0
ijkh are required to fully characterize the homogenized mate-

rial, with a0
1313 = (a0

1111 − a0
1133)/2. The resulting homogenized material is thus transversely

isotropic with x2-axis being its axis of symmetry. From the formulae above we see that the
coefficients a0

ijkh satisfy (7). The indentation problem for the homogenized material is there-
fore a special case of the plane strain indentation problem considered in Sect. 3, and we use
results from there to find p(x1) and σVM(x) in the next section.

4.3 Contact Pressure and the von Mises Stress in the Homogenized Material

Although subsequent calculations can be done for a layered medium with arbitrary α ≤ 1,
for brevity we consider here a special case with α = 1/2, i.e. the layers of both materials
are of the same thickness. When ε → 0, the contact pressure p(x1) and the von Mises stress
σVM(x) in the homogenized material may be solved by employing results of Sect. 3; this we
now present. We first compute matrices Q, R and W utilizing the definitions (19) with a0

ijkh

calculated in (50), and then diagonalize S2
−1S1 to find

Λ1 = i

√(
λA + μA + μB

λA + 2μA

)
μA

μB

and Λ2 = i

√(
λB + μA + μB

λB + 2μB

)
μB

μA

. (51)

We assume that Λ1 �= Λ2. Therefore, B is nonsingular, as discussed in Sect. 3. We solve for
A, B, and M = iAB−1 to obtain

A = − 1

2μAμB

[
μA μB

Λ1μB Λ2μA

]

, B =
[−Λ1 −Λ2

1 1

]

,

M = −i

2 (Λ2 − Λ1)

⎡

⎢
⎢
⎣

1

μB

− 1

μA

Λ2

μB

− Λ1

μA

Λ1

μA

− Λ2

μB

Λ1Λ2

(
1

μB

− 1

μA

)

⎤

⎥
⎥
⎦ ,
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which immediately provides the contact pressure p(x1) with (41).
The Poisson’s ratio for most engineering materials does not vary much. With the assump-

tion that the two isotropic materials A and B constituting the layered medium have the same
value ν of Poisson’s ratio, we rewrite M22 and p(x1) in terms of the Young’s moduli EA and
EB and ν as

M22 = 1

2

1 + ν√
1 − ν

EA − EB√
EAEB

{

EA

√
EB

(1 − 2ν)EA + EB

− EB

√
EA

(1 − 2ν)EB + EA

}−1

(52)

and

p(x1) = 2

R

√
1 − ν

1 + ν

√
EAEB

EA − EB

{

EA

√
EB

(1 − 2ν)EA + EB

− EB

√
EA

(1 − 2ν)EB + EA

}

×
√

L2 − x2
1 . (53)

We note from (53) that as EB → EA, i.e. as the layered medium tends to a homogeneous,
isotropic medium,

p(x1) → 1

R

EA

2 (1 − ν2)

√

L2 − x2
1 , (54)

which is precisely the contact pressure profile (11) for a homogeneous, isotropic half-space.
Next, using (44), we obtain

σ21(x1, x2) = 2Λ1Λ2Re

{
1

Λ1 − Λ2
h2(z1) − 1

Λ1 − Λ2
h2(z2)

}

,

σ22(x1, x2) = 2Re

{
Λ2

Λ2 − Λ1
h2(z1) − Λ1

Λ2 − Λ1
h2(z2)

}

, (55)

and σ11(x1, x2) = 2Λ1Λ2Re

{
Λ1

Λ1 − Λ2
h2(z1) − Λ2

Λ1 − Λ2
h2(z2)

}

,

where h2(z) is given by (43). Because a0
1112 = a0

2212 = a0
1233 = 0 for the homogenized mate-

rial, as discussed in Sect. 4.2, we obtain from (45) that

σ33(x1, x2) = (a0
1133 a0

2233

)
[
a0

1111 a0
1122

a0
1122 a0

2222

]−1(
σ11(x1, x2)

σ22(x1, x2)

)

, (56)

which then immediately provides σVM from (8).
Note that as the layers become thicker, i.e. as ε → ∞, the case 0 < α < 1 represents,

in physical terms, the indentation of a half-space consisting of only material A, which is
homogeneous and isotropic. At the same time, α = 1 implies the absence of material B , i.e.
α = 1 represents the indentation of a half-space consisting of material A for an arbitrary ε.
Similarly, for arbitrary ε, α = 0 signifies the indentation of a half-space consisting only of
material B , which is also homogeneous and isotropic. All of these cases correspond to the
indentation of a homogeneous, isotropic half-space.



D. Sachan et al.

5 Numerical Results and Discussion

As mentioned in Sect. 1, homogenization works best in the bulk. However, in an indentation
problem we are primarily interested in fields defined on the surface, such as the contact
pressure p(x1). To analyze the merits of homogenization near the boundary, we employ
finite element (FE) simulations to investigate indentation on layered media (ε > 0) and find
p(x1); closed-form solutions are not known for a layered medium when ε > 0. We then
show, with the help of an appropriately defined error measure, that the pressure profile for
the layered medium (ε > 0) converges to that of the homogenized material as ε → 0. The
upper bound of this error is also discussed, and is shown to depend only upon the ratio of
the Young’s moduli of the two materials in the layered media and their Poisson’s ratio ν,
which is taken to be the same for both.

We also find the von Mises stress σVM in the layered media (ε > 0). As we will demon-
strate, σVM is discontinuous across the layers for a layered medium with ε > 0. However, for
the corresponding homogenized material σVM is a continuous function. Because the maxi-
mum of σVM is important to predict the onset of yielding, it is of interest to investigate how
well the maximum of the numerically obtained discontinuous σVM for a layered medium
with ε > 0 is estimated by the σVM found from the corresponding homogenized material.

Indentation of a layered medium with ε > 0 is solved numerically using the commer-
cial FE analysis software ABAQUS [14]. Because of the assumed plane strain deformation,
we consider a two-dimensional model in the x1-x2 plane utilizing plane strain elements.
As we will compare the results from FE simulations done on a finite rectangular block of
the layered medium to analytical solutions for a half-space comprised of the correspond-
ing homogenized material, we take the block of layered medium in the FE computations
‘large enough’ to reduce the effect of finiteness of the block. We take the finite block of size
(−M1,M1) × (0,M2) with M1 > L > 0 and M2 > 0. Invoking the symmetry of the config-
uration about the x2-axis then allows us to simulate only the part (0,M1) × (0,M2). The
appropriate size of the block M1 = M2 = 100 mm is obtained through the FE analysis for an
indentation of a block of isotropic material, which acts as a benchmark. In the subsequent
analysis, the force F and the corresponding pressure p(x1) are related by

F =
∫ L

0
p(x1)dx1, (57)

where L is the contact length. Thus, the total force on the indenter would be 2F . We use a
circular indenter with radius R, such that R � L.

We recall that we set α = 1/2, i.e. layers of both the materials are of equal thickness, and
take their Poisson’s ratio to have the same value ν. We define γ := EA/EB , where EA and
EB are the Young’s moduli of the materials A and B , respectively.

The FE solution for the contact pressure distribution for a layered medium of finite size,
and characterized by ε, is denoted by pε

num, which we consider to be a good estimate of the
true pε . We define the relative error

Eε
rel :=

||pε
num − phom||L2(0,∞)

||phom||L2(0,∞)

, (58)

where || · ||L2(0,∞) =
(∞∫

0
| · |2 dx1

)1/2

is the L2-norm and phom is the contact pressure during

indentation of the half-space made up of the homogenized material, the analytical expression
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of which is given by (53). In the present case, i.e. the homogenized medium for α = 1/2 and
νA = νB = ν, with the help of (52), we obtain

M22 = 1

EA

(1 + ν)(γ − 1)√
2(1 − ν)

{√
γ

(1 − 2ν)γ + 1
− 1√

1 − 2ν + γ

}−1

. (59)

Using (11), (41) and (57), the contact length during the indentation of the homogenized
half-space and of an isotropic half-space, here denoted by Lhom and Liso, respectively, can
be expressed as

Lhom = 2

√
FR

π
M22 and Liso = 2

√
FR

π

2(1 − ν2)

E
. (60)

Again, utilizing (11), (41), and (57) we obtain

||phom||2
L2(0,∞)

= 16

3π3/2

F 3/2

√
RM22

and ||piso||2L2(0,∞)
= 8

√
2

3π3/2

F 3/2

√
R(1 − ν2)/E

, (61)

where piso is the contact pressure during indentation of an isotropic half-space. We observe
from (58) that the non-dimensional Eε

rel depends upon five dimensional variables: the force
F on the indenter, Young’s moduli EA and EB , the parameter ε which characterizes the
heterogeneity, and the radius R of the indenter. Using the Buckingham Π theorem [15], we
find three independent non-dimensional parameters relevant to the problem: F/(EAR), ε/R

and γ (= EA/EB), so that we must have a functional relationship of the form

Eε
rel = f

(
F

EAR
,

ε

R
,γ

)

. (62)

As we will see below, as F/(EAR) → ∞, or ε/R → 0, or γ → 1, we will have Eε
rel → 0.

However, as F/(EAR) → 0, or ε/R → ∞, Eε
rel → Erel,sup, an upper bound that depends only

upon γ and ν. We estimate the upper bound Erel,sup by noting that the elastic response of the
layered medium tends to that of the half-space made of material A when F/(EAR) → 0 or
as ε/R → ∞. This happens because the effect of layers from the second onwards becomes
increasingly less at small F/(EAR) or large ε/R. We explain this by observing that, if we
keep ε/R fixed, F/(EAR) can be reduced either by lowering F , or by augmenting either
EA or R. If F → 0, all layers after the top layer become increasingly less significant, as
the deformation due to the indentation does not propagate deep enough. Similarly, as EA is
raised, the top layer becomes stiffer and starts to support a greater amount of load without
transmitting it to the lower layers. On the other hand, if R increases, so does ε in order to
keep ε/R fixed. A growth in ε indicates thicker layers, which, in turn, means that the top
layer now shares an even more significant fraction of the load F .

Now, if we fix F/(EAR), ε/R may be augmented either by increasing ε or by reducing R.
The effect of the former was described above. However, as R is reduced, F/EA also has
to be correspondingly lowered to keep F/(EAR) fixed. But F/EA may be lowered either
by decreasing F or by raising EA, the effects of which were explained in the preceding
paragraph. Those arguments indicate that the role of the materials below the top layer lessens
progressively, and pε

num → pA, which is the contact pressure when the elastic half-space is
made entirely of material A when F/(EAR) → 0 or ε/R → ∞. This suggests that Erel,sup

may be obtained by replacing pε
num in (58) by pA to obtain

Erel,sup = ||pA − phom||L2(0,∞)

||phom||L2(0,∞)

,
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or
(
Erel,sup

)2 = 1
∫ ∞

0
p2

hom(x1)dx1

{∫ ∞

0
p2

hom(x1)dx1 +
∫ ∞

0
p2

A(x1)dx1

− 2
∫ ∞

0
pA(x1)phom(x1)dx1

}

. (63)

Setting E = EA in (60) and employing (61), we find

(∫ ∞

0
p2

A(x1)dx1

)

/

(∫ ∞

0
p2

hom(x1)dx1

)

=
√

M22EA

2(1 − ν2)
,

so that the first two terms in (63) are now known. We now compute the last term in (63). It
is convenient to consider the cases γ > 1, i.e. EA > EB , γ < 1 and γ = 1 separately. First,
we note that using (60) provides

LA

Lhom
=
√

2(1 − ν2)

M22EA

and
LB

Lhom
=
√

2(1 − ν2)

M22EB

= LA

Lhom

√
γ . (64)

Considering first γ > 1, we utilize in (59) and (64) the fact that ν < 1/2 for an isotropic,
linear-elastic material (see [16], Chap. 6), so that LA < Lhom < LB . Because pA(x1) = 0
outside the contact region, i.e. for x1 > LA, we find from (11) and (41) that

∫ ∞

0
pA(x1)phom(x1)dx1 = 1

2R2

EA

M22(1 − ν2)

∫ LA

0

√

L2
A − x2

1

√

L2
hom − x2

1 dx1. (65)

The integral in (65) may be expressed in terms of complete elliptic integrals of the first
and second kinds denoted by K (m) and E (m), respectively, in terms of the modulus m =
L2

A/L2
hom (see [17], Chap. 17). Because m < 1, we can express K and E as convergent

power series to obtain

∫ LA

0

√

L2
A − x2

1

√

L2
hom − x2

1 dx1

= 1

3
Lhom

{
(
L2

A − L2
hom

)
K

(
L2

A

L2
hom

)

+ (L2
A + L2

hom

)
E

(
L2

A

L2
hom

)}

= π

4
LhomL2

A

{

1 − 1

8

(
LA

Lhom

)2

− 1

64

(
LA

Lhom

)4

− 5

1024

(
LA

Lhom

)6

+O
(

LA

Lhom

)7
}

.

(66)

Combining (61), (63), and (64)–(66), we finally find

Erel,sup =
[

1 +
√

M22EA

2(1 − ν2)
− 3π

4

{

1 − 1

8

(
2(1 − ν2)

M22EA

)

− 1

64

(
2(1 − ν2)

M22EA

)2

+O
(

2(1 − ν2)

M22EA

)3}]1/2

. (67)

As is clear from (59), M22EA, and hence Erel,sup, depends only upon γ and ν. We note again
from (59) that M22EA → ∞ as γ → ∞. Therefore, from (67), Erel,sup → ∞ as γ → ∞.
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On the other hand, when γ < 1, i.e. EA < EB , we again use (59) and (64) to find that
LA > Lhom > LB . Because phom(x1) = 0 for x1 > Lhom, we utilize (11) and (41) again to
obtain

∫ ∞

0
pA(x1)phom(x1)dx1 = 1

2R2

EA

M22(1 − ν2)

∫ Lhom

0

√

L2
A − x2

1

√

L2
hom − x2

1 dx1. (68)

As before, the integral in (68) may be written in terms of K
(
L2

hom/L2
A

)
and E

(
L2

hom/L2
A

)
,

and also as a convergent power series because Lhom < LA. This is then combined with (61),
(63) and (64) to find

Erel,sup =
[

1 +
√

M22EA

2(1 − ν2)
− 3π

4

√
M22EA

2(1 − ν2)

{

1 − 1

8

(
M22EA

2(1 − ν2)

)

− 1

64

(
M22EA

2(1 − ν2)

)2

+O
(

M22EA

2(1 − ν2)

)3
}]1/2

,

(69)

which, using (59), again shows that Erel,sup depends only upon γ and ν.
We note from (59) that

lim
γ→0

M22EA

2(1 − ν2)
=
√

1 − 2ν

8(1 − ν)3
=: κ. (70)

Therefore, using (70) in (69), we obtain

lim
γ→0

Erel,sup =
[

1 + √
κ − 3π

4

√
κ

{

1 − 1

8
κ − 1

64
κ2 +O

(
κ3
)
}]1/2

, (71)

where κ = κ(ν) is defined in (70).
Turning to γ = 1, i.e. EA = EB , and employing (59), we observe that M22EA → 2(1 −

ν2) as γ → 1. Also, from (64), as Lhom always lies in between LA and LB , we must have
LA = Lhom = LB at γ = 1. This is expected because, for a given ν, γ = 1 implies that the
two materials of the layered medium are the same, so that pA = phom. Subsequently, for
γ = 1, (63) implies that Erel,sup = 0.

We now perform FE simulations and analyze Eε
rel by varying the three non-dimensional

parameters F/(EAR), ε/R and γ in turn. Figure 3a shows the variation of Eε
rel with ε/R

on log-log scale for parameter sets {F/(EAR) = 0.0001, γ = 2 } and {F/(EAR) = 0.0002,
γ = 2 }. We see that at larger values of ε/R, the presence of material B is felt less, giving rise
to a high value of Eε

rel in both cases. As ε/R is lessened, either by decreasing ε or increasing
R, the two materials A and B begin to ‘mix’ more, thereby reducing Eε

rel. At a given value of
ε/R, Eε

rel diminishes as we augment F/(EAR), which may be accomplished either by raising
F or by lowering EA and/or R. As we raise F , more layers under the indenter begin to get
affected by the impressed load, and Eε

rel declines. We achieve the same effect if we lower EA

which, for a fixed γ = EA/EB , implies the presence of layers with softer materials. Thus,
more layers under the indenter are affected, so that Eε

rel shrinks. Lowering R, while keeping
ε/R constant requires decreasing ε as well, which indicates thinner layers, i.e. more mixing
of the two materials, again resulting in a smaller Eε

rel. We note that as ε/R grows, both curves
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Fig. 3 Log-log plot of variations of Eε
rel with ε/R when (a) γ = 2 is held fixed but F/(EAR) varied, and (b)

γ varied, while F/(EAR) = 0.0001 is held fixed. The square dots represent the points where Eε
rel was found

numerically, which were then joined by straight lines.

tend to the same Erel,sup because γ is kept unchanged. Using (67), we find Erel,sup = 28.42%
for γ = 2, which matches with the numerical results; see Fig. 3a.

In Fig. 3b we show the log-log plot of Eε
rel’s variation with ε/R for a fixed value of

F/(EAR) = 0.0001, but for three different values of γ = 1.25,2, and 5. At higher values
of ε/R, we have the same situation as described above, i.e. at higher ε/R layers become
thicker and the presence of material B is felt less, thereby raising Eε

rel in all cases. As we
reduce ε/R, the materials get better mixed, so that Eε

rel lowers. However, we note that, for
a given ε/R, Eε

rel varies greatly with γ . As we increase γ beyond 1, the elastic response
of the corresponding homogenized material becomes progressively more different from that
of either of its constituents due to the increased contrast in the elastic response of the two
layers. Thus, for a given ε/R, Eε

rel is largest when γ is furthest from 1. We also note that
for γ = 1, both materials have the same elastic response and the layered medium is now
homogeneous and isotropic, so that Eε

rel = 0 for all ε/R. We observe that as ε/R grows, all
three curves tend to different Erel,sup as per (67), because γ is different in each case. Using
(67), we find Erel,sup = 65.5%,28.42%, and 9.9% for γ = 5,2 and 1.25, respectively, which
are in excellent match with the numerical results in Fig. 3b.

Next, we present in Fig. 4 the log-log plot of the variation of Eε
rel with F/(EAR). In

Fig. 4a, we set γ = 2, and investigate ε/R = 0.025 and ε/R = 0.0125. As we augment
F/(EAR), Eε

rel reduces due to the deeper influence of the applied load, thereby involving
more layers in load sharing. For a given F/(EAR), as we raise ε/R, the layers thicken, so
that materials mix less and Eε

rel increases.
In Fig. 4b, we set ε/R = 0.025 and consider γ = 0.5 and γ = 2. We note that for high

values of F/(EAR), Eε
rel is lower when γ = 2 than when γ = 0.5. For a fixed EA = E0

A, γ =
2 results in layers with materials having Young’s moduli E0

A and EB = 0.5E0
A, whereas γ =

0.5 provides E0
A and EB = 2E0

A. Therefore, γ = 0.5 yields layers with stiffer materials than
when γ = 2. For a large given value of F/(EAR), fewer layers participate in load sharing
in the half-space with stiffer layers, leading to a larger value of Eε

rel. However, as explained
previously, if F/(EAR) gets smaller, the top layer supports the most load and other layers
become progressively less important. Using (67) and (69), we find Erel,sup = 28.42% for
γ = 2, but Erel,sup = 21.18% for γ = 0.5. Because of this reversal in the magnitudes of Eε

rel
for γ = 2 and γ = 0.5, the two curves in Fig. 4b cross each other as F/(EAR) is increased.

Finally, we report the change of Eε
rel with γ in Fig. 5. In Fig. 5a, we fix ε/R = 0.025 and

probe the effect of F/(EAR) = 0.0001 and F/(EAR) = 0.0004 on Eε
rel. Evidently, Eε

rel in-
creases as we move away from γ = 1, because then the two materials get progressively more
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Fig. 4 Log-log plot of variations of Eε
rel with F/(EAR) when (a) γ = 2 is held fixed but ε/R varied, and

(b) γ is varied, while ε/R = 0.025 is held fixed. We denote the points where Eε
rel was found numerically by

circular dots, which were then joined by straight lines.

Fig. 5 Variation of Eε
rel with γ when (a) ε/R = 0.025 is held fixed but F/(EAR) varied, and (b) ε/R varied,

while F/(EAR) = 0.0001 is held fixed. As described in the main text, Eε
rel = 0 at γ = 1. The circular dots,

except at γ = 1, represent the points where Eε
rel was found numerically, which were then joined by straight

lines.

different elastically, so that homogenization results in a homogenized material with elastic
properties substantially different from those of either of the two constituent materials. Also,
as before, for a given value of γ , Eε

rel reduces as we raise F/(EAR) for reasons discussed
previously. Similarly, in Fig. 5b, we set F/(EAR) = 0.0001 and take ε/R = 0.016 and
ε/R = 0.025. At a given value of γ , Eε

rel reduces as we lower ε/R, as the layers get thinner,
yielding a better mix of the two materials.

Figure 6 explores the error landscape in the space of any two of the three non-dimensional
parameters – γ , ε/R, and F/(EAR) – while the third is kept fixed. The shaded region in
Fig. 6 depicts the parameter range which limits Eε

rel to within 5%. In Fig. 6a, F/(EAR)

is kept fixed at 0.0001, while γ and ε/R are varied. We observe that as we move away
from γ = 1, ε/R needs to reduce in order to keep Eε

rel ≤ 5%. A large |γ − 1| indicates
greater dissimilarity between the Young’s moduli of the layers’ materials, so that we need
to correspondingly reduce ε/R to increase mixing and keep Eε

rel ≤ 5%. Near γ = 1, we
find two critical γ ’s – γ1 < 1 and γ2 > 1 – that depend upon F/(EAR), such that the error
Eε

rel is independent of ε/R when γ ∈ (γ1, γ2). This happens because, for γ ∈ (γ1, γ2), the
layered materials and the resulting homogenized material have very similar elastic properties
which nullifies the effect of ε/R on Eε

rel. This may also be explained by observing that for
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Fig. 6 Regions in parameter space that limit the error Eε
rel to within the prescribed limit of 5%. The shaded

region corresponds to Eε
rel < 5%. In (a) F/(EAR) is held constant, whereas in (b) γ is fixed. The dotted

vertical lines at γ1 and γ2 in (a) define the region where Eε
rel is independent of ε/R. We denote the points

where Eε
rel was numerically found by the square dots, which were then joined by straight lines.

given F/(EAR) and ε/R, Erel,sup tends to zero continuously as γ → 1. Therefore, there
will exist γ1 < 1 and γ2 > 1, such that Erel,sup ≤ 5% for all γ1 < γ < γ2. Using (69) and
(67), respectively, we find that γ1 = 0.89 and γ2 = 1.11, which match numerical results; see
Fig. 6a.

Figure 6b represents the error landscape in log-log scale after setting γ = 2. Clearly, at
larger F/(EAR), ε/R can take up higher values while still maintaining Eε

rel ≤ 5%, because
large F/(EAR) leads to more layers getting involved in load sharing, as described previ-
ously. As we increase ε/R, the first layer progressively supports a greater percentage of the
load, and the effect of material B becomes increasingly less significant. Thus, at a given
F/(EAR), ε/R beyond a critical value leads to an error greater than 5%.

Figure 7 is similar to the Fig. 6, except that the shaded region depicts the permissible
values of the two non-dimensional parameters which restrict Eε

rel ≤ 10%. Here also, we find
two critical γ ’s, γ1 < 1 and γ2 > 1, such that the error Eε

rel is independent of ε/R when
γ ∈ (γ1, γ2). Utilizing (69) and (67), respectively, we find that γ1 = 0.77 and γ2 = 1.25,
which again match the numerical results shown in Fig. 7a.

We now compare our predictions with those obtained from the rule of mixtures, which is
a simple mechanics of materials approach to find the effective elastic coefficients for layered
material. We find four effective elastic coefficients from the rule of mixtures, denoted by E11,
E22, ν12 and μ12, as follows (see [18]):

E11 = αEA + (1 − α)EB, E22 =
(

α

EA

+ 1 − α

EB

)−1

,

ν12 = ανA + (1 − α)νB, and μ12 =
(

α

μA

+ 1 − α

μB

)−1

.

Then, employing the following relationship between stress and strain components,
⎛

⎝
ε11

ε22

ε12

⎞

⎠=
⎡

⎣
1/E11 −ν12/E11 0

−ν12/E11 1/E22 0
0 0 1/μ12

⎤

⎦

⎛

⎝
σ11

σ22

σ12

⎞

⎠ (72)
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Fig. 7 Regions in parameter space that limit the error Eε
rel to within 10%. In (a) F/(EAR) is held constant,

whereas in (b) γ is fixed. The dotted vertical lines at γ1 and γ2 in (a) define the region where Eε
rel is indepen-

dent of ε/R. The square dots represent the points where Eε
rel was numerically found, which were then joined

by straight lines.

Fig. 8 (a) Comparison between the contact pressure p(x1) in the effective materials obtained with rule of
mixtures and with homogenization. The Young’s moduli are EA = 200 GPa and EB = 100 GPa. The FE
solution for the contact pressure with ε/R = 0.01 is also shown, along with contact pressure that would be
obtained if the half-space was made of only material A or material B . (b) The variation of σVM(0, x2) with
depth x2 at x1 = 0 for EA = 200 GPa, EB = 40 GPa and ε/R = 0.01. Both the FE solution for the layered
medium and the analytical solution obtained for the corresponding homogenized material are shown. Dots
represent the nodes of the mesh in the numerical solution. In both (a) and (b), we keep F = 1000 N/mm,
ν = 0.3 and R = 50 mm fixed.

yields, after inversion of the square matrix and using (3), the components aijkh of the stiff-
ness tensor of the effective material as estimated by the rule of mixtures. Figure 8a depicts
the difference in the contact pressure obtained by using the rule of mixtures and through
homogenization (Sect. 4.3). We find that the rule of mixtures produces an effective medium
with lower stiffness than the one found through homogenization. Also, the FE solution is
closer to the homogenized solution than with the one found using rule of mixtures, demon-
strating that homogenization provides a better approximation to the true solution.

As mentioned in Sect. 2, the von Mises stress σVM is an important quantity that is often
utilized to predict the onset of yielding. We consider a layered medium with ν = 0.3, EA =
200 GPa, and EB = 40 GPa, so that γ = 5. We take F = 1000 N/mm, ε/R = 0.01 and the
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indenter’s radius R = 50 mm. We observe numerically that σVM takes its maximum on the
x2-axis, i.e. at x1 = 0. Figure 8b compares σVM along the x2-axis obtained by employing
the analytical results for the homogenized material with that found from FE computations
for a material with ε/R = 0.01. As detailed in Sect. 4.3, to find σVM on the x2-axis for the
homogenized material, we first find stress components by substituting zi = Λix2 for i = 1,2
in (55) to obtain

σ21(0, x2) = 0,

σ22(0, x2) = 1

R M22

{

− Λ2

Λ2 − Λ1

(

iΛ1x2 +
√

L2 − Λ2
1x

2
2

)

+ Λ1

Λ2 − Λ1

(

iΛ2x2 +
√

L2 − Λ2
2x

2
2

)}

, (73)

σ11(0, x2) = Λ1Λ2

R M22

{
Λ1

Λ1 − Λ2

(

iΛ1x2 +
√

L2 − Λ2
1x

2
2

)

− Λ2

Λ1 − Λ2

(

iΛ2x2 +
√

L2 − Λ2
2x

2
2

)}

,

where we have utilized the purely imaginary nature of Λi , as is clear from (51) and the

relation h2(Λix2) = −1/(RM22)(iΛix2 +
√

L2 − Λ2
i x

2
2 ) evaluated using contour integra-

tion and the residue theorem from complex analysis. We may obtain σ33(0, x2) using (56),
which when employed with (73) in (8) immediately provides σVM(0, x2). We clearly observe
that σVM(0, x2) in the homogenized material is a continuous function of x2. In the layered
medium, however, a discontinuity in σVM across layers results from the discontinuity of σ11,
and hence of σ33. Note that both σ12 and σ22 are continuous across layers because of the
physical requirement that traction be continuous at an interface. The homogenized material
provides a good approximation of the average behavior of σVM. However, near the surface,
calculations with the homogenized medium underestimate the maximum value of σVM in
the layered medium found from FE computations. It is interesting to note that as ε reduces
further, σVM becomes discontinuous at more points but, obviously, σVM remains continuous
for the homogenized material.

We now investigate the relationship of the maximum of σVM for the homogenized,
anisotropic material with the maximum of σVM found after assuming that the half-space is
made of material A or material B that comprise the layered medium. We consider two differ-
ent layered half-spaces defined by the sets {EA = 200 GPa, EB = 160 GPa} and {EA = 200
GPa, EB = 30 GPa}. We set F = 1000 N/mm, ν = 0.3 and R = 50 mm for both cases. We
have already confirmed numerically that σVM achieves its maximum on the x2-axis. We then
analytically obtain σVM(0, x2) for the homogenized material as discussed in the previous
paragraph. To find σVM(0, x2) for each of the constituent homogeneous, isotropic materials,
i.e. materials A and B , we substitute z = ix2 in (13) and (15) and employ (8) to obtain

σVM(0, x2)

= 4μ

R(χ + 1)

⎡

⎢
⎢
⎣

{

L2 + 2x2

(

x2 −
√

x2
2 + L2

)}
{
L2 (1 − 2ν)2 + 4x2

2

(
1 − ν + ν2

)}

x2
2 + L2

⎤

⎥
⎥
⎦

1/2

.
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Fig. 9 The variation of σVM(x2) with x2 during the indentations of half-spaces made either of material A

or B that constitute the layered medium and the corresponding homogenized material. Two different types of
layered media are considered. We keep F = 1000 N/mm, ν = 0.3 and R = 50 mm fixed.

We find that for materials A and B , and for the homogenized material, σVM can achieve its
maximum either at x2 = 0, or somewhere below the contact surface, i.e. at x2 > 0. As shown
in Fig. 9a, for the layered medium with EA = 200 GPa and EB = 160 GPa, the maximum of
the homogenized material is at x2 > 0, whereas Fig. 9b shows that by changing the Young’s
modulus of material B from 160 GPa to 30 GPa, the maximum in σVM for the homogenized
material shifts from x2 > 0 to x2 = 0. However, in Fig. 9b, σVM takes its maximum at x2 > 0
whenever the half-space is made only of material A or B . At the same time, σVM of the
homogenized material always remains sandwiched between the σVM corresponding to a half-
space comprised only of material A or material B .

We end this section with a remark. The discrepancy between the FE solution pε
num and

the analytical solution phom for the contact pressure is due to both the non-inclusion of
boundary layer corrector and the finite layer thickness ε/R. In the present work, we have
not attempted to distinguish between the two sources of the discrepancy. This would require
including the boundary layer corrector, which is a complex calculation. Here, the aim of
comparing pε

num and phom was to gauge the accuracy – and hence the applicability – of the
leading-order estimate (phom) obtained using homogenization. To this end, we have demon-
strated above that the relative error (in the L2 norm) between pε

num and phom converges to
zero as ε/R → 0. Depending upon the maximum acceptable error, we find the range of layer
thicknesses (see e.g. Figs. 6, 7), for which the indentation into layered media can be solved
using homogenization, without the added complexity of including the boundary layer cor-
rector. The addition of the latter will increase the range of ε/R, for which the error is within
a prescribed bound, by hastening the convergence rate of the results of homogenization to
the actual solution when ε/R → 0.

6 Conclusions

We analyzed plane strain indentation of a periodically layered half-space, which is an exam-
ple of a heterogeneous medium. We homogenized the half-space when the layer thickness
ε is small, which physically represents a finely mixed composite medium, and obtained
closed-form expressions for the components of the effective stiffness tensor of the homog-
enized material. We found that the homogenized material is anisotropic. We separately ob-
tained analytical expressions for the contact pressure for indentation into an anisotropic,
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homogeneous half-space, and used that solution to investigate the indentation of the homog-
enized medium. We demonstrated, by analyzing an appropriately defined error variable, that
the contact pressure on the layered medium, found through FE computations, tends to that
obtained by homogenization, when we either reduce the layer thickness ε/R, or augment
the applied force F/(EAR), or make γ = EA/EB tend to 1, demonstrating the merits of ho-
mogenization in an indentation problem. It was also shown that the upper bound of this error
depends solely upon γ and the Poisson’s ratio of the layers’ materials. We also observed that
this error found through homogenization is lower than the error that we obtain if we utilize
the rule of mixtures to replace the layered half-space by a homogeneous medium.

We then obtained analytical expressions for the von Mises stress σVM – a scalar field
often used to predict the onset of yielding – during indentation of isotropic and anisotropic,
homogeneous half-spaces and, through FE computations, of the layered medium. We then
investigated σVM’s maximum, which occurs either at the indenter’s tip, or below the surface
on the vertical axis passing through its tip, and observed that σVM in the layered medium
is discontinuous at the interfaces between the layers. Employing homogenization underesti-
mates the maximum of this σVM, but does capture the average behavior.

The approach presented here can be utilized for a diverse array of indentation and contact
problems of finely mixed heterogeneous media, for which numerics is expensive and com-
plex. As demonstrated here, it is possible to approximate such problems by an analogous
one posed for a suitably homogenized medium, wherein numerics are simpler and which
may even permit an exact analytical solution, as in our case.

Finally, our approach is amenable to systematic improvements. Indeed, it is well known
that the homogenization of a heterogeneous medium provides the leading-order term cor-
rectly in the two-scale asymptotic expansion of a given field variable in terms of its hetero-
geneity. However, the boundary layer corrector, if ignored from the first order onward, leads
to sub-optimal convergence of relevant fields, such as the contact pressure, as the degree of
heterogeneity tends to zero. We are currently incorporating the influence of the boundary
layers at first order to help improve the estimates made through homogenization.
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Appendix A: Evaluation of M for Isotropic Materials

For cases when S2
−1S1 is not diagonalizable, which happens only if Λ1 = Λ2 = Λ, we can

still find a nonsingular matrix Ê, such that

Ê−1S2
−1S1Ê =

⎡

⎢
⎢
⎣

Λ 1 0 0
0 Λ 0 0
0 0 Λ̄ 1
0 0 0 Λ̄

⎤

⎥
⎥
⎦ , (74)

where the square matrix on the right is the Jordan normal form of S2
−1S1. We can then

extend the definition of M to such cases by writing Ê in terms of two 2 × 2 nonsingular
matrices A and B, as done in (25). We let Ê = [

A Ā
B B̄

]
and define M = iAB−1 as done in

Sect. 3.
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For an isotropic material with Lamé’s parameters λ and μ, we find matrices Q, R and W
using (10) and (19) to be

Q =
[
λ + 2μ 0

0 μ

]

, R =
[

0 λ

μ 0

]

and W =
[
μ 0
0 λ + 2μ

]

. (75)

While diagonalizing S2
−1S1 with (75), we find Λ1 = Λ2 = i, corresponding to which we

obtain only one independent eigenvector. Therefore, the matrix S2
−1S1 for an isotropic ma-

terial, obtained using (75) is not diagonalizable. Hence, we use its Jordan normal form (74)
to compute Ê, so that

S2
−1S1 = Ê

⎡

⎢
⎢
⎣

i 1 0 0
0 i 0 0
0 0 −i 1
0 0 0 −i

⎤

⎥
⎥
⎦ Ê−1,

where Ê =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 1

2μ
i

λ + 2μ

2μ(λ + μ)
− 1

2μ
−i

λ + 2μ

2μ(λ + μ)

− i

2μ

1

2(λ + μ)

i

2μ

1

2(λ + μ)
−i −1 i −1
1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (76)

We now easily find A, B and M, as done in (25) to obtain

A =
⎡

⎢
⎣

− 1

2μ
i

λ + 2μ

2μ(λ + μ)

− i

2μ

1

2(λ + μ)

⎤

⎥
⎦ , B =

[−i −1
1 0

]

and M = 1

2(λ + μ)

⎡

⎢
⎣

λ + 2μ

μ
i

−i
λ + 2μ

μ

⎤

⎥
⎦ . (77)

In particular, we obtain from (77) that M22 = (χ + 1)/4μ, where we recall that χ =
(λ + 3μ)/(λ + μ). Thus, for an isotropic material, (41) reduces to (11), as it should.

We, however, cannot use the matrix B thus obtained in (44) when S2
−1S1 is not diago-

nalizable, because in such a case the general solutions (24), which crucially depend upon
this diagonalization, no longer hold and need modification. Therefore, for indentation of
an isotropic material, we require a different approach. We follow the results obtained by
Muskhelishvili [19], which we compiled at the end of Sect. 2. Muskhelishvili employed a
similar complex variables based approach as given in Sect. 3, but employing the structure
of an isotropic material right from the beginning, thereby bypassing the problem of lack of
diagonalization of S2

−1S1.

Appendix B: Solutions of the Auxiliary Periodic Problem

We solve auxiliary problem (49) for χ lm, which are then used in (48) to find the components
of the effective stiffness tensor of the homogenized material. For l = 1, m = 1 and i = 1,
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the PDE

∂

∂xj

(

aijkh

∂χlm
k

∂xh

)

= ∂aij lm

∂xj

in (49) transforms to

∂

∂x1

(

a1111
∂χ11

1

∂x1
+ a1122

∂χ11
2

∂x2
+ a1133

∂χ11
3

∂x3

)

+ ∂

∂x2

(

a1212
∂χ11

1

∂x2
+ a1221

∂χ11
2

∂x1

)

+ ∂

∂x3

(

a1313
∂χ11

1

∂x3
+ a1331

∂χ11
3

∂x1

)

= 0.

The remaining terms in the above expansion are zero either on account of aijkh’s being zero
for appropriate indices, as is clear from (10), or because aijkh(x) = aijkh(x2), which implies
∂aijkh

∂xm

= 0 for m = 1,3. Using (10), we obtain

∂

∂x1

{

(λ + 2μ)
∂χ11

1

∂x1
+ λ

∂χ11
2

∂x2
+ λ

∂χ11
3

∂x3

}

+ ∂

∂x2

(

μ
∂χ11

1

∂x2
+ μ

∂χ11
2

∂x1

)

+ ∂

∂x3

(

μ
∂χ11

1

∂x3
+ μ

∂χ11
3

∂x1

)

= 0. (78)

Similarly, for l = 1, m = 1, i = 2 and l = 1, m = 1, i = 3, we have

∂

∂x1

(

μ
∂χ11

1

∂x2
+ μ

∂χ11
2

∂x1

)

+ ∂

∂x2

{

λ
∂χ11

1

∂x1
+ (λ + 2μ)

∂χ11
2

∂x2
+ λ

∂χ11
3

∂x3

}

+ ∂

∂x3

(

μ
∂χ11

2

∂x3
+ μ

∂χ11
3

∂x2

)

= ∂λ

∂x2
, (79)

and

∂

∂x1

(

μ
∂χ11

1

∂x3
+ μ

∂χ11
3

∂x1

)

+ ∂

∂x2

(

μ
∂χ11

2

∂x3
+ μ

∂χ11
3

∂x2

)

+ ∂

∂x3

{

λ
∂χ11

1

∂x1
+ λ

∂χ11
2

∂x2
+ (λ + 2μ)

∂χ11
3

∂x3

}

= 0, (80)

respectively. We solve (78)–(80) for χ11(x) := (χ11
1 , χ11

2 , χ11
3 ). To this end, we guess that

χ11
1 , χ11

2 and χ11
3 are independent of x1 and x3, so that (78), (79) and (80) reduce, respec-

tively, to the following:

∂

∂x2

(

μ
∂χ11

1

∂x2

)

= 0,
∂

∂x2

{

(λ + 2μ)
∂χ11

2

∂x2

}

= ∂λ

∂x2
and

∂

∂x2

(

μ
∂χ11

3

∂x2

)

= 0.
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Solving the above set of equations, we obtain

χ11
1 = χ11

3 = 0

and χ11
2 =

⎧
⎪⎪⎨

⎪⎪⎩

(λA − λB)(1 − α)

(λA + 2μA)(1 − α) + (λB + 2μB)α

(
x2 − α

2

)
, 0 < x2 < α,

(λA − λB)α

(λA + 2μA)(1 − α) + (λB + 2μB)α

(
α + 1

2
− x2

)

, α < x2 < 1.

(81)

Similarly, with the assumption that χ lm(x) = χ lm(x2) we solve for other χ lm as given below:

χ12
2 = χ12

3 = 0, χ12
1 =

⎧
⎪⎪⎨

⎪⎪⎩

(μA − μB)(1 − α)

μA(1 − α) + μBα

(
x2 − α

2

)
, 0 < x2 < α,

(μA − μB)α

μA(1 − α) + μBα

(
α + 1

2
− x2

)

, α < x2 < 1,

(82)

χ13 = 0, χ21 = χ12,

χ22
1 = χ22

3 = 0,

χ22
2 =

⎧
⎪⎪⎨

⎪⎪⎩

[(λA + 2μA) − (λB + 2μB)] (1 − α)

(λA + 2μA)(1 − α) + (λB + 2μB)α

(
x2 − α

2

)
, 0 < x2 < α,

[(λA + 2μA) − (λB + 2μB)]α

(λA + 2μA)(1 − α) + (λB + 2μB)α

(
α + 1

2
− x2

)

, α < x2 < 1,

χ23
1 = χ23

2 = 0, χ23
3 = χ12

1 ,

χ31 = χ13 = 0, χ32 = χ23, and χ33 = χ11.

We note that χ lm = χml .

Appendix C: Components of the Effective Stiffness Tensor

Using (48), we compute the components of the effective stiffness tensor of the homogenized
material. We start with a0

1111:

a0
1111 = 1

|Y |
∫

Y

a1111(x) dx − 1

|Y |
∫

Y

(

a1111
∂χ11

1

∂x1
+ a1112

∂χ11
1

∂x2
+ a1113

∂χ11
1

∂x3

+ a1121
∂χ11

2

∂x1
+ a1122

∂χ11
2

∂x2
+ a1123

∂χ11
2

∂x3
+ a1131

∂χ11
3

∂x1
+ a1132

∂χ11
3

∂x2
+a1133

∂χ11
3

∂x3

)

dx.

In the second integrand on the right side above several terms vanish identically because,

a1112 = a1113 = a1121 = a1123 = a1131 = a1132 = 0 from (10). Also
∂χ11

1

∂x1
= ∂χ11

3

∂x3
= 0 from

(81). Thus, we compute

a0
1111 = 1

|Y |
∫

Y

a1111(x) dx − 1

|Y |
∫

Y

a1122(x)
∂χ11

2

∂x2
dx

= l1l3

|Y |
{∫ α

0
(λA + 2μA)dx2 +

∫ 1

α

(λB + 2μB)dx2

}
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− l1l3

|Y |

{∫ α

0

λA(λA − λB)(1 − α)

(λA + 2μA)(1 − α) + (λB + 2μB)α
dx2

+
∫ 1

α

−λB(λA − λB)α

(λA + 2μA)(1 − α) + (λB + 2μB)α
dx2

}

= (λA + 2μA)α + (λB + 2μB)(1 − α)

− (λA − λB)2

(λA + 2μA)(1 − α) + (λB + 2μB)α
α(1 − α).

Next, we calculate a0
1112:

a0
1112 = 1

|Y |
∫

Y

a1112(x) dx − 1

|Y |
∫

Y

(

a1111
∂χ12

1

∂x1
+ a1112

∂χ12
1

∂x2
+ a1113

∂χ12
1

∂x3

+ a1121
∂χ12

2

∂x1
+ a1122

∂χ12
2

∂x2
+ a1123

∂χ12
2

∂x3
+ a1131

∂χ12
3

∂x1
+ a1132

∂χ12
3

∂x2
+ a1133

∂χ12
3

∂x3

)

dx

= 0

utilizing (10), along with
∂χ12

1

∂x1
= 0 and χ12

2 = χ12
3 = 0 from (82). Similarly, we find the

other coefficients that are provided in (50).
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