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Equilibrium shapes are obtained for sessile and pendant liquid drops placed on elastic membranes in
two-dimensions. The membrane is allowed to undergo large deformations under the action of capillary
forces and fluid pressure. We focus on the global characteristics of the system, like the equilibrium
shape of the drop, the membrane’s deformed shape, the apparent contact angle and contact size,
and their variation with the volume of the drop for different membrane tensions and drop apex
curvatures. It is found that the apparent contact angle is not simply a function of material property
but of the system’s geometry as well. The contact size for sessile drops shows a non-monotonic
behavior with the volume for all drop apex curvatures. However, for pendant drops, the behavior is
strictly monotonic below a critical value of the drop apex curvature. Published by AIP Publishing.

https://doi.org/10.1063/1.5046155

l. INTRODUCTION

Elastocapillarity is the study of interactions between cap-
illary forces and elastic forces.' It has long been known that
a liquid drop placed on a soft substrate deforms it.>~'® With
increasing interest and focus on areas such as micro- and nano-
scale technologies, bioengineering, and flexible electronics,
there has been a renewed interest in this area by way of experi-
ments'°~?® and modeling.>!?°3¢ The interaction between cap-
illarity and elasticity has been employed to increase the density
of nucleation of water drops,?” modify the adhesive behavior
of soft gels,?®° understand pattern formation using droplet
migration,*? study the interaction between droplets in view
of coalescence and coarsening,*! understand wrinkling*>—**
and capillary origami,*>*® control the droplet’s splash upon
impact,* measure bulk stresses in soft solids,”” and measure
surface stresses in soft solids?>>*>! and, more recently, strain-
dependent surface stresses.”’-?8233 Recent studies reveal that
solid surface stresses may also play an important role at larger
length scales.?’

Das et al.>* used density functional theory to compute
capillary forces exerted by a sessile drop resting on a solid
substrate. They report that besides the normal component of
the force, there exists a tangential component near the con-
tact line. Marchand et al.>> used density functional theory to
determine contact angle selection and reported that the con-
tact angle is selected at a microscopic scale. Lubbers et al.’!
obtained the equilibrium shapes of sessile drops over incom-
pressible, thick linear elastic substrates by minimizing elastic
and capillary free energies. They identify suitable length scales
that determine the transitions in the contact angle that occur
upon changing the substrate from rigid to soft.
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Jerison et al.”! measured the displacement fields in a sili-
cone gel deformed due to a sessile water droplet using confocal
microscopy and compared the results with the linear elasticity
theory that included finite thickness, as well as surface tension
of the substrate. The theory presented in the preceding work
was later extended to droplets of finite size.” Style et al.>
also considered other liquid droplets and reported that the
local deformation near the contact line was universal and was
independent of the droplet size and substrate thickness.

Hui and Jagota? analyzed the local deformation close to
the contact line of an elastic half-space and identified a dimen-
sionless parameter that governs the transition from a surface
tension-dominated regime to an elasticity-dominated regime.
Bostwick et al.>* used dual integral equations to obtain elas-
tic deformations of a soft substrate due to a partially wetting
liquid for different contact line models.

Limat®° obtained analytical expressions for deformation
induced by straight contact lines on linear elastic solids having
non-zero solid surface tension. Dervaux and Limat** extended
the latter analysis to obtain solutions for rivulets resting on
substrates. While the previous two studies were restricted to
the case of linear elasticity and identical solid surface ten-
sions over dry and wet parts of the solid, De Pascalis et al>®
incorporated material and geometric non-linearities, as well
as different solid surface tensions. Bardall e al.’” generalized
the analysis to include partial wetting, gravity, and a tangential
contact line force. They found that it is important to include a
horizontal traction boundary condition in order to avoid strain
singularity due to inclusion of the tangential contact line force.

While the literature discussed so far mostly modelled sub-
strates as thick elastic solids, the wetting of liquid droplets
on slender elastic objects (thin plates) has also been consid-
ered.®13:1438.59 Recently, Neukirch er al.%” obtained equilib-
rium solutions to drops on elastic beams using a variational
approach. This work was extended®' to include the extension

Published by AIP Publishing.
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of the beam. Hui and Jagota®” considered a pendant drop
hanging underneath a neo-Hookean membrane in plain strain.
They report that the contact angle is not a material prop-
erty and that it depends on the elasticity and geometry. They
ignored gravity and the global deformation of the membrane.
Schulman and Dalnoki-Veress®® conducted experiments on
micro-droplets deforming thin, free-standing films made of
an elastomer and glass and found that the contact angle mea-
sured as a function of the tension in the film is described by
the Neumann construction. More recently Davidovitch and
Vella® reported that the effect of liquid drops on thin elastic
sheets may be significant, in which the local stresses may be
much larger than the pre-tension in the uniformly stretched dry
sheet.

In this article, we obtain equilibrium shapes of sessile
and pendant drops placed on elastic membranes in two-
dimensions. A reason to investigate drops on membranes as
opposed to thicker solids is the hope that the increased defor-
mation observed in membranes would make such systems
more accessible to experiments.’®>%%3 The use of a lower-
dimensional structure like the membrane also serves to avoid
mathematical issues associated with the stress singularities
at the contact line, which are relevant for elastic continua.
The novel features of this work are as follows. We include
the effects of gravity and allow for the large deformation
of the membrane under the action of capillary forces and
fluid pressure. The constitutive response of the membrane is
taken to be linear elastic. In contrast to the majority of the
literature that focuses on the contact line geometry, we are
interested here in the global properties of the system, i.e.,
the apparent contact angle and contact size and their vari-
ation with the volume of the drop for different membrane
tensions and drop apex curvatures. Furthermore, the model
presented here places no restrictions on the angle made by
the drop with the membrane, which should be contrasted with
previous studies that assumed that the contact angle with the
undeformed substrate was 90° (neutrally wet). Our analy-
sis reveals that the apparent contact angle is a function of
the structure’s geometry and is not simply a material prop-
erty. Thus, even if we were to keep the membrane’s material
the same but change, say, its extent, the contact angle would
change.

Membrane
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The outline of the article is as follows. In Sec. 11, the math-
ematical model is formulated and the governing equations and
boundary conditions are described. The equations obtained are
solved in Sec. III. The results obtained are discussed in Sec. IV,
followed by the conclusions.

Il. MATHEMATICAL FORMULATION

In order to model the drop-membrane system, we place
the origin O of the coordinate system at the apex of the drop
and orient it such that the y axis is the line of symmetry.
Figure 1 represents such a system schematically. Because we
are concerned with a two-dimensional system, the drop is a
two-dimensional liquid with no variations in the z direction
and the membrane is in plane strain with all the deformations
and forces being in the X — y plane. Quantities with an overbar
denote dimensional quantities.

The drop has a pressure p; and a uniform density p;, while
the surrounding air has a pressure p, and a uniform density
Pq. It is assumed that the drop is much more dense than the
surrounding air, i.e., p; > p,. The drop-air interfacial tension,
denoted by v, is uniform. The shape of the drop-air interface
is given by y = h(x). The position of the triple point, where
the three phases liquid, solid, and air meet, is (a, E(Ez)). The
acceleration due to gravity is g.

A membrane is an elastic continuum that does not trans-
mit or resist bending moments.®* In its current configuration,
the arc length of the membrane measured in the X — y plane
is 2(1; + 1), while the tension in the membrane as a function
of the arc-length is 7'(%). In the undeformed (original) config-
uration, the membrane has length 2]y and uniform tension 7.
It is assumed that both Ty and T'(¥) are much greater than the
weight of the membrane. We note that in the present formula-
tion, T'(%) is taken to be the sum of mechanical tension in the
membrane and surface tensions arising from the interactions
of the membrane with both liquid and air. This allows us to
analyze the system in a more general context, where we do
not assume a priori that the solid-liquid and solid-air tensions
are the same, an assumption most commonly made in the lit-
erature.’!323% The profile of the membrane in the wet and dry
parts, as shown in Fig. 1, is given by y = 77;(X) and y = 77,(%),
respectively.

— 20— j—— 20—
) 20 o e 20, .
(@ (b)

FIG. 1. Schematic of a two-dimensional (a) sessile and (b) pendant drop placed on a thin elastic membrane in plane strain. The coordinate system is placed at
the apex of the drop as shown. The part of the membrane in (not in) contact with the drop is called the wet (dry) part of the membrane. The total length of the
wet part is 2/1, and that of the dry part is 2/;. The total contact size is 2a. The undeformed membrane has a length 2/ and is represented by dotted lines.



082114-3 Nair, Sharma, and Shankar

A. Governing equations

Because of the spatial symmetry of the system, the domain
of analysis is restricted to 0 < X < ly. This domain is further
divided into the wet region, 0 < X < a, and the dry region,
a < X < Iy, with ¥ = a being the position of the triple point.

The shape of the drop in equilibrium is governed by the
Young-Laplace equation. For sessile and pendant drops, the
Young-Laplace equation leads to

T2 _pigh 1 1
— 3/2 - - = ( )
dh\’? vy b
1+|—
(&)
where j = 1 for sessile drops and j = —1 for pendant drops.

The above equation is the Bashforth-Adams equation adapted
to two dimensions. The derivation is provided in Appendix A.
The boundary conditions are

h=0 (2a)

and ~
dh
Fri 0, atx =0. (2b)

The wet part of the membrane has tension T(¥). The
equation governing the profile of a geometrically non-linear
membrane is®®

d*in

which follows from balancing membrane tension and fluid
pressure; see Appendix A for a derivation. The boundary
conditions are

dr
N atx=0 (4a)
dx

and
71 =hatX =a. (4b)

In the present formulation, the volume of the drop is not a
constraint imposed on the system; instead, it is calculated after
obtaining the profiles of the drop and the membrane.

The dry part of the membrane has a tension T (¥). Because
this part of the membrane is free of loading, the governing
equation for the membrane (3) simplifies to

=0. 4)

&

Phys. Fluids 30, 082114 (2018)

The boundary conditions are
M=hatX=a (6a)

and q

172 I

i =tan ¢ atx =a-, (6b)
where ¢ is the angle made by the dry membrane with the
horizontal at the triple point and X = a* indicates the approach
toward the triple point from the dry side.

The forces acting at the triple point X = a are shown

in Fig. 2. The force balance along the X and ¥ directions is,

respectively,

Trcos ¢ —ycos iy —Ticos & =0 (7a)
and

T> sin ¢ +jy sin ¢ — Ty sin & = 0. (7b)

The above is the appropriate generalization of Neumann’s
triangle®’ to the current system.

B. Non-dimensionalization

We first non-dimensionalize the governing equations

for the drop. We use the capillary length 1 = X to
P8

non-dimensionalize the variables x and £, i.e., we set

=xand — =h. 8)

>~ | =
=~ =

Thus, the non-dimensional versions of (1) and (2) are, respec-
tively,

d’h
Iy2
s —jh-p)=0 ©
{1 + (%) }
dx
and
h=0 (10a)
and
%:0 atx =0, (10b)
where
A 1
18 = Z = E (11)

is the non-dimensional curvature at the apex of the drop.

We now non-dimensionalize the governing equations
for the membrane. We use half the undeformed length of
the membrane [y to non-dimensionalize the variables , 71,

Air T

FIG. 2. Forces acting at the triple point
of (a) sessile and (b) pendant drops on
elastic membranes. We consider 7 and
T to be the sum of mechanical tension
in the membrane, and membrane-liquid
and membrane-air surface tensions.

(b)
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and 77, (denoted by a tilde) and surface tension y to non-
dimensionalize T} and 7>, i.e., we set

- m - i - T = T, =
Ty o Ao, and 2 =T (12)
lo 0 0 4 Y

Thus, (3) and (4) are non-dimensionalized to obtain, respec-

tively,

d*nm
2 . C —~
o -i=B-ca=0 (3
I+ @ h
dx
and _
dmy
Ezo atx =0 (148.)
and _
n=hatX=a, (14b)
- h _ 1 7
where h = — and a = Eintelrms.ofc = %anda = b

c c A
Similarly, (5) and (6) are non-dimensionalized to obtain,

respectively,

d*n,
and _
m=hatx=a (16a)
and &
g —tang atX = a*. (16b)
Finally, (7) is non-dimensionalized to obtain
Tzcosqb—cosw—i cosé =0 (17a)
and _ _
Trsing +jsiny —Tysiné = 0. (17b)
We note that we have followed different non-

dimensionalizations for the drop and the membrane. Thus,
some quantities are scaled in two ways, e.g., the contact size
a is scaled as both a and a.

lll. SOLUTION

For a given non-dimensional drop apex curvature S and
contact size a, the governing equation (9) with boundary con-
ditions (10) is solved numerically to obtain the profile of the
drop. We note that the function /(x), in general, is not a single
valued function of x. In order to obtain shapes such as those
shown in Fig. 1, we integrate (9) till the slope becomes infi-
nite. The governing equation is then rewritten in terms of x(%)
and is integrated. The resulting solution is then appended to the
solution obtained from (9). With the profile of the drop known,
we obtain the angle y made by the drop with the x axis at the
triple point; see Fig. 2. Next, for the same drop apex curvature
B3, contact size a, and a choice of wet membrane tension T,
the governing equation (13) with boundary conditions (14) is
solved numerically to obtain the profile of the wet membrane.
With the profile of the wet membrane known for the selected
Ty, we obtain the angle £ made by the membrane with the x axis
at the triple point; see Fig. 2. Because our solution procedure
calculates the drop volume a posteriori, the surface profile of
the drop from the apex to the triple point is independent of

Phys. Fluids 30, 082114 (2018)

the membrane’s deformation. We choose ¢ = 10, and we have
verified that the results for lower values of ¢ are found to be
qualitatively similar (see footnote on p. 8964 in Ref. 62).

For the given drop apex curvature 3, contact size a, and
wet membrane tension 7', once we know ¢ and &, we solve
(17) to obtain the dry membrane tension

T, = \/le +1+2T; cos 6, (18)

where 6 = + j¢ is the apparent contact angle, and the angle
¢ made by the dry membrane with the horizontal is
T2+T2 -1
¢ = & —jarccos| ———=—|.
2T\ T,
Turning to the dry part of the membrane, we solve (15) with
boundary conditions (16) to obtain

72 = tan ¢(X — @) + h(@). (20)

Once the profiles of the drop and the membrane are obtained,
we rescale the membrane results to be consistent with that of
the drop, i.e., we set

19)

X =x,cnp =11, and ¢y =1n2.

Similarly, we note that the wet and dry membrane tensions are
the same,
T] = T1 and Tz = Tz.

Finally we calculate the drop’s non-dimensional volume from

"
4 =/ {h(x) = n1(x)} dx. 2y
—a

We first quickly note the validations that we performed
to benchmark our numerical procedure. We matched the sur-
face profiles of the drops between the apex and the triple point
with the appropriate two-dimensional results of Bashforth and
Adams.% Our computations of the membrane’s deformation
were validated by matching with analytical results that may
be obtained when deformations are small and when the pres-
sure loading is uniformly spread over the entire length of the
membrane.

We now present our results. We will investigate equi-
libria of the drop-membrane system for sessile and pendant
drops, while varying the non-dimensional drop apex curva-
ture S and the non-dimensional drop volume V but keeping
the non-dimensional tension 7'; in the wet part of the mem-
brane constant. There are two important things to note in this
context. First, # may vary because A or b changes or both.
If we imagine that the liquid is taken to be the same, then A
is fixed, and different 8 correspond to drops of the same liq-
uid that have different apex curvatures 1/b; cf. (11). In this
article, we will consider the equilibrium shapes of a given
fluid (same A). Second, if the tension in the wet part of the
deformed membrane is kept constant, then the pre-tension 7'y
may vary. This may cause theoretical predictions to contra-
dict intuition that is often predicated upon systems in which
the membrane, and hence the pre-tension, is kept fixed, while
the fluid’s amount or type is varied. We will discuss this more
in Sec. IV.

Our results for the system’s global geometry are shown
in Figs. 3-5. For a given fluid with a given non-dimensional
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1 6t
0.5 -8 B=1.00
10} ~____~ .
1.25 FIG. 3. Profiles of (a) sessile and (b)
~15, pendant drops on geometrically non-
linear elastic membranes for various
“16} non-dimensional drop apex curvatures
= B but the same non-dimensional vol-
—17t 1.50 ume V and wet membrane tension 7'y.
In each case, the dry part of the mem-
-18* brane extends up linearly to meet the end
-83 support. In (b), the ordinate is split to
1.00 .75 accommodate a solution for different 8
-2 —g4t in the same plot. (a) V=1.5,T1 =6. (b)
175 V=175T;=0.6.
25 : : 85 '
-1 0 1
X -2 -1 0 1 2
X
(a) ()
0 V=0.8716
) 3.3743
0 T TS
- 6.2504
. \O/
-5
= BN
-8
~10 " 8.0917
-12
-15 -14
-10 -5 0 5 10 —4 -2 0 2 4
x x
(a) (b)
1 T T -
0.5
0 UV = 0.1622

(©)

FIG. 4. Profiles of sessile drops on membranes for increasing drop volumes V. (a) Global and (b) local picture of the drop with the drop apex curvature 8 =0.25.
(c) Local picture of the drop with the drop apex curvature 8 = 0.75. The wet membrane tension 7’1 = 6 in each case. The ordinate in (c) is split to accommodate
a solution for different V in the same plot. In each case, the dry part of the membrane extends up linearly to meet the end support.
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FIG. 5. Profiles of pendant drops on membranes for increasing drop volumes V. (a) Global and (b) local pictures of the drop with the drop apex curvature

B =1.00. (c) Local picture of the drop with the drop apex curvature 8 = 1.75. The wet membrane tension 7'y

= 0.6 in each case. The ordinate in (c) is split to

accommodate a solution for different V in the same plot. In each case, the dry part of the membrane extends up linearly to meet the end support.

volume V, Fig. 3 shows the profiles of sessile and pendant
drops on membranes for different drop apex curvatures 3 but
the same wet membrane tension 7. Now comparing drops
with different S may be considered to comparing different
drop-membrane interactions. As is known, sessile drops on
rigid substrates become shorter and wider when g decreases,
while an increase in S results in drops taking more spherical
shapes.%® Thus, for a given fluid, a lower/higher g indicates a
greater/lesser energetically favorable interaction between the
drop and the membrane. Analogously, we see in Fig. 3 that as
[ increases, the drops take shapes that are more spherical. We
also observe that when the non-dimensional apex curvature 3
reduces, the contact size a lowers and, even though the volume
(hence the weight) of the drops are the same, the membrane’s
deformation increases.

Figure 4 shows the profile of sessile drops for increasing
non-dimensional volumes V at fixed choices of 8. As may be
seen from Fig. 4, the angle ¢ made by the membrane at the
triple point may be large in some cases, thereby highlighting

the importance of including geometric non-linearities in the
description of the membrane’s deformation.

Similarly, Fig. 5 shows the profile of pendant drops for
increasing non-dimensional volumes V, again keeping S fixed.
For small to moderately large volumes, the membrane deforms
by forming an upward bulge. At larger volumes, however,
the membrane is observed to sag. The upward bulging of the
membrane in the axisymmetric case has been reported exper-
imentally?* and predicted by theory.®® It is to be noted that
in Fig. 5(b), the increase in the volume follows the order:
V1 <V, < V3 < Vy; this, somewhat counter-intuitive predic-
tion, is explained later when we discuss Fig. 8(b). Furthermore,
for g =1.001n Fig. 5(b), the drop profiles are convex for small
to moderately large volumes but become concave close to the
contact point at larger volumes. The drop profiles for g =1.75
in Fig. 5(b), however, remain convex even at large volumes.
This suggests that when S = 1.00, the pressure difference
p1 — Pq changes sign at some height 4*. Because the pres-
sure difference is directly proportional to the curvature at a
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point on the interface (Young-Laplace relation), the change in
sign of the pressure difference from positive to negative indi-
cates a change in sign of the curvature at that point. This point
will be revisited in Sec. IV when we discuss apparent contact
angles. Finally, we again note that the angle £ made by the
membrane at the triple point is sometimes large, thereby high-
lighting the importance of including geometric non-linearities
in the description of the membrane’s deformation.

IV. RESULTS AND DISCUSSIONS

In Sec. III, the equilibrium shapes of sessile and pendant
drops on geometrically non-linear elastic membranes were dis-
cussed. We now consider the variation with the drop volume V
and drop apex curvature S of the following characteristics of
the coupled drop-membrane system: apparent contact angle 6
(¥ + € for sessile drops and ¥ — & for pendant drops), contact
size a, dry membrane tension T2, slopes ¢, &, and ¢ at the triple
point of, respectively, the dry membrane, the wet membrane,
and the drop’s surface; cf. Fig. 2. All results shown below are
obtained by keeping the wet membrane tension 7' fixed at an
indicated value. The results corresponding to other values of
T show similar trends in general and thus have not been dis-
cussed. We now reiterate an important comment made earlier.
The wet membrane tension 7’| can be related to the pre-tension
T in the membrane before the drop is placed; cf. Appendix B.
It is possible that T be different even though 7'y is the same.
This may, sometimes, as for 8 =1.75 in Fig. 8(b) below, cause
results to run contrary to our expectations that are, typically,
predicated upon Ty being constant. All such instances will be
highlighted.

Figure 6 shows the variation of the contact size a with
the drop volume V for any choice of 8. The contact size of
sessile drops in Fig. 6(a) is observed to grow initially with the
volume and then reduce. This non-monotonic behavior is dif-
ferent from that of drops on rigid substrates, where the contact
size always grows with the volume. This may be explained as
follows: We take a constant  to correspond to the same liquid
(i.e., same capillary length 1) with the same apex curvature
(same b) and, thus, the same membrane. In such cases, as the
drop’s volume grows, so does its weight, which deforms the

Phys. Fluids 30, 082114 (2018)

membrane more. After a point, further increase in the drop’s
volume is accommodated by the membrane’s increased sag
(see Fig. 4), which leads to a lowering in the contact size a.
We recover the rigid-limit by having large tension 7| (see
Appendix C).

The pendant drops in Fig. 6(b) display two different
behaviors. For smaller 8, the contact size grows monotoni-
cally, but for larger 3, a grows non-monotonically. This con-
trasting behavior may be linked to whether or not the curvature
of the drop’s surface changes its sign—at low 3, we noticed in
Fig. 5(a) that the surface became concave at large V—while
at larger S in Fig. 5(b), the surface remained convex even at
large V. We define 8* to be the drop apex curvature at which
the contact size in Fig. 6(b) ceases to display a monotonic
behavior. Typically 1.25 < f* < 1.50 for T'| = 0.6.

Finally, for a given V, the contact size decreases with
an increase in B for both sessile and pendant drops. As
discussed in the context of Fig. 3, comparing drops with
different 8 may be considered to comparing drops with
the same capillary length A (same drop) but different
dimensional apex curvatures (1/ b) (different drop-membrane
interactions). Then a lower B corresponds to a more ener-
getically favorable droplet-membrane interaction, and vice
versa. Thus, at lower S, the drops spread more and have
higher contact areas, which decreases as 8 increases; see also
Fig. 3.

Figure 7 shows changes in the slope of the drop’s surface
with the horizontal at the triple point with the drop volume V.
This angle is constant for drops on rigid substrates and cor-
responds to the equilibrium contact angle. From Fig. 7(a), we
observe that the sessile drop’s slope ¢ increases monotoni-
cally with the drop’s volume V when the drop apex curvature
B is kept fixed. This behavior may be understood in conjunc-
tion with Fig. 6(a) where we noticed that the increase in the
drop’s volume was accommodated by the enhanced sag of
the membrane. Because of this, the contact size first grew
and then reduced, and this is reflected in the drop’s slope ¥
when it switches from acute (<90°) to obtuse (>90°). From
Fig. 7(b), we observe that a pendant drop’s slope i varies non-
monotonically with the drop’s volume V when the drop apex
curvature S is kept fixed.

1.8 1.5
£ =1.00
1.6
1.25
1
FIG. 6. Variation of the contact size a
3 S] t'/——9-\*_/‘> with the volume V of (a) sessile and
1.50 (b) pendant drops. We investigate sev-
eral drop apex curvatures 3 as indicated
0.5 next to the associated curves. (a) T =6
and (b) T = 0.6.
1.70
1.75
0
4 0.5 1 1.5 2 2.5 3
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FIG. 7. Variation of the slope ¢ made by (a) sessile and (b) pendant drops at the triple point with the volume V of the drop. We investigate several drop apex

curvatures 3 as indicated next to their associated curves. (a) 71 = 6. (b) 71 = 0.6.

Next, for a given V, ¢ increases with g for both sessile
and pendant drops in Fig. 7. This, as was noted above, is
because a larger 8 may be taken to correspond to a lesser
energetically favorable drop-membrane interaction, which
causes the liquid surface to enter the triple point at larger i;
see Fig. 3.

Figure 8 shows the variation of the slope ¢ made by the
dry part of the membrane at the triple point with the volume V
of the drop. It is noted that enlarging the volume of both sessile
and pendant drops (for 8* < ) augments ¢ for all drop apex
curvatures . An increment in the volume makes the weight
of the drop larger, thereby depressing the membrane more.
Furthermore, for a given volume, an increase in the drop apex
curvature S elevates ¢. This is because as S increases for a
given V, the contact size decreases (Fig. 6). Thus the weight
of the drop acts up on a narrower part, causing the membrane
to deform more.

The decrease in ¢ eventually with V for pendant drops
with 8 > B in Fig. 8(b) is due to the difference in pre-tension
Ty values in the membrane; see Appendix B. We recall from

the first paragraph of this section that 7y may be different if
T, is kept constant. Indeed, for V| = 0.8184, Ty = 0.5716;
Vo =1.2447, Ty = 0.5998; V3 = 1.6057, To = 0.6004; and
V4=1.7713, To = 0.6010. We observe that as V increases, so
does the pre-tension, and an initially stiffer membrane has to
deflect less to support a greater volume. This explains both the
decrease in ¢ in Fig. 8(b) and the observations of Fig. 5(b),
wherein the drop with the volume V4 deflected the membrane
less than the drop with the volume V3 even though V4 > V3.
However, in Fig. 13 of Appendix B, we show the monotonic
increase in membrane deformation with the volume V for
constant pre-tension 7.

Figure 9 shows the variation of the slope ¢ made by the
wet part of the membrane at the triple point with the volume
V of the drop. From Fig. 9(a), we observe that for sessile
drops, & increases with the drop volume for any choice of
the drop apex curvature . This is because when the drop’s
volume is larger, so is its weight acting upon the membrane,
causing it to deform more. For pendant drops, we note from
Fig. 9(b) that negative & correspond to the bulging up of

0.
©1.75

FIG. 8. Variation of the slope ¢ made
by the dry part of the membrane at the
triple point with the volume V of (a)
sessile and (b) pendant drops. We inves-
tigate several drop apex curvatures 8 as
indicated next to their associated curves.
(a)T;=6.(b) T =0.6.
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FIG. 9. Variation of the slope & made by the wet part of the membrane at the triple point with the volume V of (a) sessile and (b) pendant drops. We investigate

several drop apex curvatures 3 as indicated next to their associated curves. (a) 71 = 6. (b) T = 0.6.
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FIG. 10. Variation of the apparent con-
tact angle € with the volume V of (a)
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indicated next to their associated curves.
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the membrane, as seen in Fig. 5. For higher volumes, how-
ever, the bulge gradually reduces and the membrane starts
sagging, as may be observed in Fig. 5. There is thus a vol-
ume for which the wet membrane remains flat even though
there is a pendant drop below. In this configuration, the dry
part is not flat as the force balance at the triple point must
hold.

Figure 10 shows the variation with the drop volume V of
the apparent contact angle 6 (¢ + & for sessile drops and
— & for pendant drops) made by drops at the triple point. From
Fig. 10(a), we observe that for sessile drops, 6 increases with
the drop volume for any choice of the drop apex curvature
B. This is explained by noting that an increase in the drop
volume augments the weight of the drop, if we consider, as
we do, that a fixed 8 corresponds to the drops of the same
liquid with the same dimensional apex curvature (1 /b). This
results in an increase in the slope ¥ as well as &, as may be
seen from Figs. 7(a) and 9(a). The opposite, however, is the
case for pendant drops where, in Fig. 10(b), we find that 6
lowers with the elevation in the drop volume. Furthermore,
for a given V, 6 increases with g for both sessile and pendant
drops. This is because, as noted before, the increase in the drop
apex curvature reduces the contact area, causing the weight of
the drop to act upon a narrower part of the membrane, leading
to a greater deformation.

Figure 11 shows the variation of the dry membrane tension
T, with the volume V of the drop. From (18), we note that for
a given wet membrane tension 7’1, 7, is a function of only the
apparent contact angle A. Thus, we observe from Fig. 11(a)
that for sessile drops, T’ strictly decreases as V grows for all
drop apex curvatures 3. Atlower V, T, > T, while at larger V,
the converse holds. However, for pendant drops, we observe
from Fig. 11(a) that T, increases with V for all drop apex
curvatures 8 and T, > T for all V. Furthermore, for a given
V, T lowers when f is augmented for both sessile and pendant
drops.

V. CONCLUSION

In this work, we have obtained equilibrium solutions
of drops on geometrically non-linear elastic membranes in
two-dimensions. Both sessile and pendant drops were con-
sidered. The profiles obtained correspond to different com-
binations of drop-membrane interactions, contact size, and
membrane tension. Subsequently, the properties of the system
were analyzed.

It was found that for sessile drops, the apparent contact
angle increased with the drop volume for all drop apex curva-
tures. However, in the case of pendant drops, the apparent
contact angle decreased with the drop volume. Also, for a
given drop volume, the apparent contact angle increased with
the drop apex curvature for both sessile and pendant drops.
Apart from being a material property, it was noted that the
apparent contact angle depends on the system’s geometry as
well. It was also noted that for sessile drops, the contact size
varied non-monotonically with the drop volume for all drop
apex curvatures. For pendant drops, however, the contact size
increased with the volume for drop apex curvatures below a
critical value.

Phys. Fluids 30, 082114 (2018)

As a sequel to this work, the equilibrium shapes of
axisymmetric drops placed on geometrically non-linear cir-
cular elastic membranes will be analyzed both theoretically
and experimentally.

APPENDIX A: DERIVATION OF THE GOVERNING
EQUATIONS

We first derive the governing equations for a two-
dimensional drop placed on a solid surface. The derivation pro-
vided here follows that of Bashforth and Adams.® At a point
on the interface between the two fluids, the Young-Laplace
equation is

Pa—p1=-yV -1,
where 7 is the unit normal from the drop toward the sur-
rounding fluid and V - 7 is the curvature, both measured at the
point under consideration. Now, p, — p; = pa — (P10 — pigh)
= (Pao — P1o) + p1gh = —% + p,gh, where pyo and b are, respec-

tively, the fluid pressure and the radius of the curvature at the
drop’s apex. The last equality follows from the application of
the Young-Laplace equation at the drop’s apex. The curvature
at the point under consideration is

where j = +1 for sessile/pendant drops. Thus, the Young-
Laplace equation reduces to

dx? pigh 1
32 A

)

which governs the equilibrium shape of a two-dimensional
drop.

We now derive the governing equation for a geometri-
cally non-linear membrane in plane strain. At a position s
along the length of the membrane, an element of length As
is considered. The forces acting on this element are shown
in Fig. 12. Tensions T(s) and T(s + As) act along the tan-
gential directions, at positions s and s + As, respectively. The
resultant of the distributed forces, f(s + As*), is assumed to
act along the normal direction at the position s + As*, where
As* < As. The tangential and normal unit vectors at any posi-
tion s are #(s) and 7(s), respectively. For both sessile and
pendant drops, the normal 7i(s) always points away from the
drop and toward the surrounding air. The angles made by #(s)
with the X axis is 6(s). In order to calculate f(s + As™), we
note that at a point on the membrane, the total traction exerted
by the drop and air is (p; — p,)I - A(s + As*), where I is the
identity tensor. The distributed force intensity vector is, thus,
f(s+As™) = (p; — pa)As (s + As™).

The force balance along the direction ?(S) is

—jT1(s + As) cos{8(s + As) — 8(s)} +jT1(s)
— (p; — pa) sin{O(s + As) — 0(s)}As = 0,
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Ty (5 + As)

f(s+ As™)

and that along the direction 7(s) is
—jTi(s + As) sin{0(s + As) — 6(s)}
+ (P — Pa) cos{O(s + As) — 0(s)}As =0
where, as noted above, j = 1 is for sessile drops and j = —1
is for pendant drops. As As — 0, the tangential force balance

reduces to dT /ds = 0 so that 7; = C, a constant. The normal
force balance, with As — 0, now results in

+(P1

do(
—JT1 Pa)=0

‘We note that

and

Thus, we obtain

as the governing equation for a geometrically non-linear
membrane in plane strain.

- (Z - Plgﬂ_l) =
b

APPENDIX B: PRE-TENSION IN THE MEMBRANE

Inits undeformed state, the membrane has alength 2l and
a uniform tension Ty. The undeformed shape is depicted by
dotted lines in Fig. 1. A symmetrically placed drop around the
midpoint of the membrane deforms it, and the system assumes
the equilibrium shape shown by solid lines in Fig. 1.

In its deformed state, the membrane has uniform tensions
T) and T, in the wet and dry parts of the membrane, respec-
tively. The wet and dry parts of the membrane have total lengths
2[; and 2/, respectively. Due to spatial symmetry, we focus
our analysis to the region 0 < ¥ < Iy. The material point where
tension is discontinuous, i.e., the triple point, has coordinates
(5*,0) in the undeformed state.

We now obtain a relationship between non-dimensional
tensions T and T';. The change in the length of the wet part
of the membrane is

j —% Tl - TO —%
=5 = AE s,

Phys. Fluids 30, 082114 (2018)

FIG. 12. Free body diagram of an ele-
ment of the membrane in plane strain
when a (a) sessile drop and (b) pendant
drop are placed.

and that of the dry part of the membrane is

lz—(lo—§)= (l—i*)

where E is the membrane’s Young s modulus and A is its
cross-sectional area. In our two dimensional analysis, A is
the membrane thickness. In non-dimensional terms, the above
equations reduce to

l—S*=ZT1_TOS*
! E A
and T
b= (=5 = L= = 5",

where the ratio % is the elastocaplllary length.* We can solve
the above two equations to obtain s* and T'y. For example, for 8
=1.75 in Fig. 5(c), we obtain with % =1e-03andA=1e-06
the following pre-tensions: for V| = 0.8184, Ty = 0.5716;
Vo =1.2447, To = 0.5998; V3 = 1.6057, Ty = 0.6004; and
V4 =1.7713, T = 0.6010.

It was observed in Fig. 5(b) that the drop with the vol-
ume V4 deflected the membrane less than the drop with
the volume V3 even though V4 > V3. The figure had a
constant wet membrane tension 7, = 6. In Fig. 13, we
have, for the same S = 1.75, pendant drop profiles for
different wet membrane tensions but for the same pre-
tension Ty = 0.85. We observe that the increasing volume

-2
Vi = 0.6869

N
~11
12
-13 Vs = 1.6039
14
—1.771
s Vi =1.7713
-16
. 0 i 2
X

FIG. 13. Profiles of pendant drops on membranes for increasing drop volumes
V. Local picture of the drop with the drop apex curvature 8 = 1.75. The
membrane pre-tension is 7¢p = 0.85 in each case. The ordinate is split to
accommodate a solution for different V in the same plot. In each case, the dry
part of the membrane extends up linearly to meet the end support.
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FIG. 14. Variation of the contact radius a with the volume V for large pre-
tension 7Tg. The open circles denote the data points corresponding to the case
of rigid substrates.

V results in a monotonic increase in the deformation of the
membrane.

APPENDIX C: VARIATION OF CONTACT RADIUS
WITH VOLUME IN THE RIGID LIMIT

Figure 14 shows that in the limit of large pre-tension T,
our results approach those obtained for a truly rigid substrate.

APPENDIX D: AN ALTERNATE LENGTH SCALE

For the sake of completeness, Fig. 15 shows the pro-
files of sessile drops on membranes obtained by keeping the
drop apex radius of the curvature as the length scale for non-
dimensionalizing both the drop and the membrane. However,
there is a caveat in adopting this length scale. This procedure
does not, however, capture the phenomenon that the contact
angle is not just a material property but indeed a function of
the geometrical and material properties of the membrane-fluid
system.

2
15
1
=
0.5
0
0.5 ‘
-1 05 0 05 1
x

FIG. 15. Profiles of sessile drops on membranes for increasing drop vol-
umes V using the alternate length scale. The non-dimensional parameter here
corresponds to 8 = 10. The wet membrane tension 7'; = 6 in each case.
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