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a b s t r a c t 

We investigate the three-dimensional dynamics of a variable-length, geometrically-exact beam. The beam 

is released / retracted from a guide. Geometrically exact beam theory, like regular beam theory, is phrased 

in terms of the deformation of a neutral axis and the rotations of the cross-sections normal to the neu- 

tral axis. In contrast to beams in linear elasticity, geometrically exact beams allow large rotations of the 

beam’s cross-section and large deformations of the line of centroids. We derive the necessary govern- 

ing equations for the system which, in three dimensions, contain non-trivial contributions from three- 

dimensional rotations coupled to the varying length of the cable. These equations are then solved through 

a Galerkin finite element method, after first mapping the physical domain to a fixed computational do- 

main. Large rotations are incorporated into the finite element procedure by utilizing the exponential rep- 

resentation of the rotation tensor. Finally, as an important application of our computational formulation, 

we investigate the three-dimensional dynamics of a spinning, vibrating, variable-length, flexible beam 

through a sequence of increasingly complex examples. 

© 2019 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Engineering of moving flexible structures finds its application in

various areas of engineering, such as robotics, air to air refuelling,

deployment of aerostats and conveyor belts. In many of these ap-

plications the extent of deformation is large, and the contribution

of shear stresses on the deformation is not negligible. Thus, cross-

sections can deform, rotate by a large amount, and may not remain

normal to the neutral axis. At the same time, the strain magni-

tudes can still be small, so that a fully nonlinear three-dimensional

analysis may not be necessary. Indeed, the aforementioned as-

pects are successfully captured by the Geometrically Exact Beam

Theory (GEBT) introduced by Reissner (1973) and popularized by

Simo (1985) , and other generalized beam theories such as those

given in Antman (1974) , Green et al. (1974) , etc. The above refer-

ences present beam formulations but do not show their numerical

implementations. 

The GEBT with shear deformation has been implemented

in various research works over the years ( Vu-Quoc and Simo,

1987; Simo and Vu-Quoc, 1988; Vu-Quoc, 1986; Simo and Vu-

Quoc, 1986; Ibrahimbegovi ́c, 1995 ). Some of the recent applica-

tions of GEBT can be found in Rubin (2001) , Cao et al. (2006) ,
∗ Corresponding author. 
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riedmann et al. (2009) , Liu and Lu (2016) . In a special ver-

ion of GEBT the cross-sections do not change shape, but

re allowed to rotate in three-dimensions, as in Vu-Quoc and

imo (1987) , Simo and Vu-Quoc (1988) , Simo and Vu-Quoc (1986) ,

u-Quoc (1986) . Preceding references make use of differential

opology for the formulation of finite rotations and their deriva-

ives. McRobie and Lasenby (1999) recently presented a different

pproach using geometric algebra. They presented a reformulation

f the rotation inertia term in Simo and Vu-Quoc (1986) but did

ot provide any numerical examples. 

Humer (2013) investigate the planar dynamics of a slender

eam sliding through an orifice which is fixed in space. The

ork makes use of a non-linear beam formulation accounting

or large vibrations but neglecting the effects of shear and rota-

ory inertia of the cross-section. Vu-Quoc and Li (1995) extended

EBT with shear deformation to address situations wherein the

eam’s length varies, but limited themselves to the planar situ-

tion. Steinbrecher et al. (2017) present a comparison of differ-

nt numerical approaches for the planar sliding beam problem by

roviding solutions using conventional planar elasticity and Reiss-

er’s beam theory. The authors also discuss the implementation

f contact formulations to impose proper boundary conditions. To

imulate the sliding-beam formulation the authors use an open-

ource simulation software HOTINT ( Gerstmayr et al., 2013 ). The

eferences on the sliding beam problems above confine themselves

o the planar case, however, engineering applications typically in-

https://doi.org/10.1016/j.ijsolstr.2019.11.005
http://www.ScienceDirect.com
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Fig. 1. Sketch of the reference (undeformed) and current (deformed) configurations of a variable length, flexible GE beam in three dimensions. 
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olve three-dimensional deformation, and this motivates the cur-

ent study of three-dimensional deformations of variable length GE

eams. We will derive the governing equations, and then develop a

omputational algorithm based on the Finite Element (FE) method

o solve those equations. The algorithm is validated by comparing

ith several benchmark problems and checking for conservation of

ngular momenta. Finally we demonstrate the utility of the three-

imensional, varying length GE beam theory by solving several, in-

reasingly complex, examples. 

In Section 2.1 we describing the kinematics of the system under

pecified assumptions. Utilizing the results of Section 2.1 , we es-

ablish the governing equations for the system in Sections 2.2 and

.3 . Section 2.4 describes forces in terms of material vector fields

sing a pull back strategy. In Section 2.5 we discuss the map-

ing of the physical domain to a fixed computational domain.

ection 3 discusses the finite element formulation for the prob-

em described in Section 2 . Section 3.1 describes the admissi-

le variation for the system which is followed by description of

he weak form in Section 3.2 and its subsequent linearization

n Sections 3.3 and 3.4 . In Section 4 we demonstrate the three-

imensional dynamics of the beam using various problems. 

. Algebraic formulation 

Deflection of beams can be decomposed into (a) deformation of

 central axis of the beam defined in some suitable manner, e.g.

he neutral axis, and (b) rotation and deformation of beam cross-

ections that were normal to the central axis at some instant, say

t the beginning of the deformation. A special formulation of Ge-

metrically Exact (GE) beam theory enables us to solve problems

nvolving large deformations of the central axis and large rotations

f the cross-section, while making the following assumptions: 

(a) plane cross-sections rotate rigidly during deformation, and 

(b) deformation, although large, remains in the elastic region. 

We now derive the governing equations for variable length GE

eam, whose one end moves in a straight and smooth guide while

he other end is free. The material elements of the beam inside the

uide undergo only translation and no rotation. 
.1. Kinematics 

With the assumptions mentioned above, the configuration of a

eam may be defined by specifying the orientation of the cross-

ections and the position vector of the cross-section’s centroid. The

urve joining the centroids of the cross-sections will be referred to

s the line of centroids . 

The cross-sections themselves are defined in a natural way in

he reference configuration, e.g. for a beam that is initially a long,

lender cylinder, the cross-sections in the reference configuration

re taken to be normal to the cylindrical beam’s symmetry axis. Let

 ∈ [0 , L ] ⊂ R be the arc length coordinate measured from a fixed

oint O on the beam that locates the centroid in the reference con-

guration. Let point O be attached to the rod inside the guide, far

rom the guide’s exit, which acts as the origin for the translating

rame ˆ E i . The ˆ E i frame can be accelerating making it necessary to

efine a separate spatially fixed frame defined by ˆ e i , centred at the

oint O X that is fixed at the opening of the guide. Fig. 1 shows a

hree-dimensional schematic of the system. 

We define the map φ0 ( S , t ) which generates the line of cen-

roids in the current (deformed) configuration at any given time.

ig. 1 displays the vector φ0 ( S , 0) at the current time. 

As initially plane cross-sections after deformation remain plane,

heir orientations may be defined using a normal vector ˆ n .

hus, the position of a point on the cross-section with cen-

roid φ0 ( S , t ) may be easily defined in an orthogonal frame

 ̂

 t 1 (S, t) , ̂  t 2 (S, t) , ̂  n (S, t) } , which will be referred to as the moving

rame . For convenience, the notation 

ˆ t 3 (S, t) ≡ ˆ n (S, t) will be em-

loyed. The position vector for any point in the rod with respect

o O in the deformed configuration is 

S ( ξ1 , ξ2 , S, t ) = φ0 ( S, t ) + 

2 ∑ 

i =1 

ξi ̂
 t i ( S, t ) 

= φ0 ( S, 0 ) + u ( S, t ) + 

2 ∑ 

i =1 

ξi ̂
 t i ( S, t ) , (2.1) 

here ξi ̂ t i locates a material point on cross-section with respect to

he cross-section’s centroid; see inset in Fig. 1 . Hence, the position

ector of a material point with respect to O X is 

 (ξ1 , ξ2 , S, t) = φ0 (S, 0) + u (S, t) − r 0 (t) + 

2 ∑ 

i =1 

ξi ̂ t i (S, t) , (2.2)
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Fig. 2. (a) An element of the deformed beam in the reference and current configu- 

rations. (b) Free body diagram of the deformed element in (a). 
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where r 0 ( t ) locates O X with respect to O ; see Fig. 1 . 

As the moving frame forms an orthogonal basis, there exists an

orthogonal transformation �( S ) such that 

ˆ 
 i (S, t) = �(S, t) · ˆ e i . (2.3)

In our case, the beam is initially straight, hence �(S, 0) = 1 . 

2.2. Linear and angular momenta 

We now find expressions for linear and angular momenta of the

beam. We first define time derivatives of the moving frame as 

˙ ˆ 
 i (S, t) = 

˙ �(S, t) · ˆ e i = { ˙ �(S, t) ·�T 
(S, t) } · ˆ t i = Q (S, t) · ˆ t i , 

i = 1 , 2 , 3 . (2.4)

where Q (S, t) = 

˙ �(S, t) · �T (S, t) is a skew-symmetric tensor, with

w ( S , t ) as the associated axial vector, so that 

˙ ˆ 
 i (S, t) = w (S, t) × ˆ t i (S, t) . (2.5)

The linear momentum per unit of reference length of a given

cross-section A is given by 

L (S, t) = 

∫ 
A 

ρ0 (ξ , t) ̇ ϕ (ξ , S, t) dξ = A ρ (S) { ̇ u (S, t) − ˙ r 0 (t) } , (2.6)

where A ρ is the mass per unit length in the reference configura-

tion. In the above, we have employed (2.2) , symmetry arguments

and the fact that ξ i are measured from the centroid of the cross-

section. 

The angular momentum per unit reference length of a given

cross-section A can be evaluated in a similar fashion. The angular

momentum about the centroid φ0 ( S , t ) is given by 

H (S, t) = 

∫ 
A 

ρ0 (ξ , S) 
[
ϕ (ξ , S, t) − { φ0 (S, t) − r 0 (t) } ]× ˙ ϕ ( ξ , S, t) dξ

= 

[ ∫ 
A 

ρ0 (ξ , S) { || φ − φ0 || 2 1 + ( φ − φ0 ) � ( φ − φ0 ) } dξ
] 

· w (S, t)

= I ρ (S) · w (S, t) , (2.7)

where 1 is the identity tensor, 

I ρ = 

( 

2 ∑ 

i =1 

2 ∑ 

j=1 

∫ 
A 

ρ0 ξi ξ j dξ

) 

(δi j 1 − t i � t j ) (2.8)

is the cross-section’s moment of inertia tensor, defined in terms

of the Krönecker delta δij , and w ( S , t ) is a spatial vector, defined

through (2.5) , which is associated with the spin of the moving

frame . As in (2.6) , we have employed symmetry arguments and the

fact that φ0 ( S , t ) is the centroid of the cross-section to obtain (2.7) .

It is important to note that while the inertia tensor’s matrix is in-

dependent of time in the moving frame , it will vary in the fixed

coordinate system. The inertia tensor in the fixed frame is given

by J 
ρ

= �T · I ρ · �. 

2.3. Balance laws 

We now derive the local form of the balance laws for a geo-

metrically exact beam with variable length. The force and moment

balance equations will be derived for an infinitesimal element of

the material configuration. The free body diagram for an element

is shown in Fig. 2 . 

Linear momentum balance for the element in Fig. 2 is given by 

n (b, t) − n (a, t) + 

∫ b 

n̄ (S, t) dS = 

∂ 

∂t 

∫ b 

L (S, t) dS, (2.9)

a a 
here n ( S , t ) is the internal force acting on the cross-section S ,

¯ (S, t) is the sum of external surface and body forces per unit ref-

rence length, and L ( S , t ) is the linear momentum per unit refer-

nce length defined by (2.6) . Taking the limit b → a, dividing by

he elemental length dS and using (2.6) yields the linear momen-

um balance 

∂ n (S, t) 

∂S 
+ n̄ (S, t) = A ρ (S) ̈u (S, t) − A ρ (S) ̈r 0 (t) . (2.10)

s the kinematic assumptions for the present formulation are the

ame as Vu-Quoc and Li (1995) and Simo (1985) , therefore, the

bove equation when reduced to two dimensions matches the

quation given by Vu-Quoc and Li (1995) , and, matches the linear

omentum balance given by Simo (1985) , in case of a fixed length

eam. 

Angular momentum balance about point S = a is given by 

m (b, t) − m (a, t) + [ φ0 (b, t) − φ0 (a, t)] 

× n (b, t) + 

∫ b 

a 

[ φ0 (S, t) − φ0 (a, t)] × n̄ (S, t) 

+ m̄ (S, t) dS = 

∂ 

∂t 

∫ b 

a 

H (S, t) dS, (2.11)

here m ( S , t ) is the internal moment, m̄ (S, t) is sum of external

urface and body moment and H ( S , t ) is the angular momentum

er unit of reference length defined by (2.7) . Taking the limit b →
, dividing with elemental length dS , using (2.5), (2.7), (2.10) and

2.11) yields, finally, 

∂ m (S, t) 

∂S 
+ 

∂ φ0 (S, t) 

∂S 
× n (S, t) + m̄ (S, t) 

= I ρ · ˙ w (S, t) + w (S, t) ×
{

I ρ (S) · w (S, t) 
}

(2.12)

he above matches the equation given by Simo (1985) and, in two-

imensions, reduces to the angular momentum balance given by

u-Quoc and Li (1995) . 
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Fig. 3. Internal force in the reference and the current configurations. 
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.4. Material description 

The spatial vector and tensor fields m ( S , t ), n ( S , t ), I ρ( S ), and w ( S ,

 ), are defined in terms of area elements of the deformed beam.

aterial vector and tensor fields are defined by pulling back these

ector/tensor fields to the reference configuration through the or-

hogonal transformation �( S , t ): 

n (S, t) = � · N (S, t) ; m (S, t) = � · M (S, t) ; I ρ (S, t) = � · J 
ρ
(S) · �T 

 (S, t) = � · W (S, t) ; ˙ w (S, t) = � · ˙ W (S, t) , (2.13)

here N ( S , t ), M ( S , t ), J ρ ( S ) and W ( S , t ) are the material counter-

arts of n ( S , t ), m ( S , t ), I ρ ( S , t ) and w ( S , t ) respectively. The last

f (2.13) is obtained by taking the time derivative of w ( S , t ) and

mploying (2.4) as follows: 

˙ 
 (S, t) = 

˙ � · W (S, t) + � · ˙ W (S, t) = � · ˙ W (S, t) , 

here, we recall from (2.4) that, Q · w = w × w = 0 . 

We observe that the components of the vector fields n ( S , t ) and

 ( S , t ) in the moving frame are the same as the components of

he material vector fields N ( S , t ) and M ( S , t ) in the fixed frame , i.e.

f N = N i ̂ e i and M = M i ̂ e i then n = N i ̂ t i and m = M i ̂ t i . 

Fig. 3 shows a schematic that explains spatial and material vec-

ors using the example of n and N . 

The material description of the governing equations are ob-

ained by substituting (2.13) into (2.10) and (2.12) . We will exten-

ively employ material descriptions in subsequent sections. 

.5. Domain mapping 

The length of the beam outside the guide varies with time,

aking the reference configuration a varying-length domain. Such

roblems are best handled by mapping the varying-length do-

ain to a fixed-length domain, see, e.g. Vu-Quoc and Li (1995) or

oy and Chatterjee (2009) . Initial length of the beam measured

rom the origin O of translating frame is represented by L , while

 0 (t) = | r 0 (t) | represents the length of the beam that remains

ithin the guide. The material point at S ∈ [ R 0 ( t ), L ] at time t is

apped to ζ ( S , t ) ∈ [0, 1] by 

(S, t) = 1 + 

S − L 

R 1 (t) 
, (2.14)

here R 1 (t) = L − R 0 (t) is the length of the beam outside the

uide. We now define the total derivative d(. ) 
dt 

= 

˙ (. ) = 

˚(. ) + 

˙ ζ (. ) ′ 

here (. ) ′ = 

∂(. ) 
∂ζ

, ˙ (. ) = 

∂(. ) 
∂t 

| S and 

˚(. ) = 

∂(. ) 
∂t 

| ζ . From (2.14) we

ave 

˙ = (1 − ζ ) 
˙ R 1 

R 1 

and ζ̈ = (1 − ζ ) 
R̈ 1 

R 1 

− 2(1 − ζ ) 

(
˙ R 1 

R 1 

)2 

. 
ields that were defined in terms of S, which corresponds to the

hysical domain, are now expressed in terms of ζ which relate to

he new, fixed domain. Fields in the new domain will be indicated

y a ( ̃ . ) . Thus, for example, ˜ u (ζ , t) = u (S, t) , ˜ �(ζ , t) = �(S, t) ,

˜ 
 (ζ , t) = w (S, t) . Utilizing Eqs. (2.14) and the time derivatives pre-

ented above, the linear momentum balance (2.10) in the new do-

ain is modified to 

˜ 
 

′ ∂ζ

∂S 
+ 

˜ n̄ = A ρ

[{
(1 − ζ ) 2 ˙ R 

2 
1 

R 

2 
1 

˜ u 

′ 
}′ 

+ 2 ̊̃

 u 

′ (1 − ζ ) ̇ R 1 

R 1 

+ 

˜ u 

′ (1 − ζ ) ̈R 1 

R 1 

+ 

˚˚̃
 u − r̈ 0 

]
. (2.15) 

Similarly, angular momentum balance (2.12) becomes 

∂ ˜ m 

∂ζ

(
∂ζ

∂S 

)
+ 

∂ ̃  φ0 

∂ζ

(
∂ζ

∂S 

)
× ˜ n + 

˜ m̄ = I ρ · ˙ ˜ w + 

˜ w ×
(
I ρ · ˜ w 

)
= 

˜ � · J 
ρ

· ˙ ˜ W + 

˜ � ·
[ 

˜ W ×
(

J 
ρ

· ˜ W 

)] 
. (2.16) 

he expression for angular velocity ˜ w and angular acceleration 

˙ ˜ w

re evaluated in the new, fixed domain as follows: 

sym [ ̃  w ] = 

˙ ˜ � · ˜ �
T = 

(
˚̃
 � + 

˙ ζ ˜ �′ 
)

· ˜ �
T = asym [ w ζ] + 

˙ ζ asym [ ω ζ] ,

here A = asym [ a ] is the skew-symmetric tensor corresponding to

he vector a with A i j = −εi jk a k in terms of the alternating tensor

ijk , w ζ is the axial vector of ˚̃
 � · ˜ �

T 
and ω ζ is the axial vector of

˜ ′ · ˜ �
T 

. Thus, 

˜ 
 = w ζ + 

˙ ζω ζ . (2.17) 

ifferentiating ˜ w with respect to time yields 

˙ ˜ w = 

˚̃
 w + 

˙ ζ ˜ w 

′ = ẘ ζ + 

˚̇
 ζω ζ + 

˙ ζ ω̊ ζ + 

˙ ζ ( w ζ
′ + 

˙ ζ
′ 
ω ζ + 

˙ ζω ζ
′ 
) 

˙ ˜ w = ẘ ζ + 

˙ ζ 2 ω ζ
′ + ζ̈ω ζ + 

˙ ζ ( ̊ω ζ + w ζ
′ 
) . (2.18) 

aterial counterparts of the above vectors are similarly evaluated

s 

˜ 
 = W ζ + 

˙ ζκζ and 

˙ ˜ W = W̊ ζ + 

˙ ζ 2 κ
′ 
ζ + ζ̈κζ + 

˙ ζ
(
κ̊ζ + W 

′ 
ζ

)
. (2.19) 

imilarly, substituting (2.17) and (2.18) into (2.16) yields 

˜ m 

′ 
(

∂ζ

∂S 

)
+ 

˜ φ
′ 
0 

(
∂ζ

∂S 

)
× ˜ n + 

˜ m̄ 

= I ρ · { ẘ ζ + 

˙ ζ 2 w ζ
′ + ζ̈ω ζ + 

˙ ζ ( ̊ω ζ + ω ζ
′ 
) } 

+ ( w ζ + 

˙ ζω ζ ) ×
{

I ρ · ( w ζ + 

˙ ζω ζ ) 
}
, (2.20) 

hich, upon using (2.13) and (2.19) can be expressed using vari-

bles of the material configuration as: 

˜ m 

′ 
(

∂ζ

∂S 

)
+ 

˜ φ
′ 
0 

(
∂ζ

∂S 

)
× ˜ n + 

˜ m̄ 

= 

˜ � · J 
ρ

· { W̊ ζ + 

˙ ζ 2 W ζ
′ + ζ̈κζ + 

˙ ζ ( ̊κζ + κζ
′ 
) } 

+ 

˜ � ·
[ 
( W ζ + 

˙ ζκζ ) ×
{ 

J 
ρ

· ( W ζ + 

˙ ζκζ ) 
} ] 

, (2.21) 

qs. (2.15) and (2.21) are more convenient for computations, as the

nderlying computational domain is fixed. 

The boundary conditions for the beam in ( ζ , t ) domain are

iven by 

˜ u (ζ , t) = 0 and 

˜ �(ζ , t) = 1 at ζ = 0 , 

nd 

˜ n̄ (ζ , t) = 0 and 

˜ m̄ (ζ , t) = 0 at ζ = 1 , (2.22) 

hich correspond to, respectively, no deformation at the guide’s

pening and the beam’s tip being traction free. 
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It may be noticed that governing equations are more easily

evaluated in terms of ˜ φ0 in comparison to ˜ u . The utilization of

˜ u may appear to be unreasonable, but its importance is revealed

in the implementation of the boundary conditions. The boundary

condition at ζ = 0 in terms of ˜ φ0 (ζ , t) would be ˜ φ0 (ζ , t) = r 0 (t) ,

which is not only a time varying condition (making it tougher to

apply), but also suggests that the solution depends on the length

of the beam inside the guide, which is not true. 

3. Finite element formulation 

The governing equations are non-linear and cannot be solved

through analytical methods. Hence we will utilize the non-linear

finite element method (FEM). As this is a transient problem, we

will employ Newmark time integration which, in turn, requires

finding updates for the primary variables. The configuration of the

beam is defined using a linear vector space for the line of centroids

and an orthogonal group for the orientation of the cross-section.

Because of the latter, it is essential to determine the admissible

variations carefully, which is discussed in the next subsection. We

then evaluate the weak form and compute its linearization about a

given configuration, using the admissible variations. Once the lin-

earized weak form is obtained, we discretize it using Galerkin pro-

jections to obtain a system of linear equations for the increments

in the beam’s deformation. 

3.1. Admissible variations 

The configuration of a GE beam is defined in terms of the

line of centroids ˜ φ0 (ζ , t) and the orientation of the cross-section,

which is followed through the rotation tensor ˜ �(ζ , t) . 

Consider an arbitrary configuration of the beam given by
˜ φ(ζ ) := { ̃  φ0 (ζ ) , ˜ �(ζ ) } . For convenience we do not explicitly

show t in the argument in this sub-section. Let ˜ φε (ζ ) :=
{ ̃  φ0 ε (ζ ) , ˜ �ε (ζ ) } be a configuration obtained by a small perturba-

tion of the beam from 

˜ φ(ζ ) : 

˜ φ0 ε (ζ ) = 

˜ φ0 (ζ ) + ε η0 (ζ ) and 

˜ �ε (ζ ) = R ε (ζ ) · ˜ �(ζ ) , (3.1)

where η0 ( ζ ) is an arbitrary vector field which, for a small ε > 0, su-

perposes an infinitesimal displacement onto the line of centroids,

while R ε( ζ ) is a superposed infinitesimal rotation. Now, an in-

finitesimal rotation may be approximated by a skew-symmetric ten-

sor θ but, if R ε( ζ ) is skew-symmetric , then 

˜ �ε (ζ ) will not remain

orthogonal and, hence, will not represent a configuration of the

beam’s cross-section. 

Employing an orthogonal R ε( ζ ) will ensure the orthogonality of
˜ �ε (ζ ) , making it an admissible variation. Orthogonal transforma-

tion may be obtained by exponentiating a skew-symmetric tensor.

Therefore we set R ε (ζ ) = exp [ ε θ(ζ )] , so that 

˜ �ε (ζ ) = exp [ ε θ(ζ )] · ˜ �(ζ ) . (3.2)

Let the axial vector of θ( ζ ) be ϑ( ζ ). Then, any variation of the

form η(ζ ) = { η0 (ζ ) , ϑ (ζ ) } , which satisfies the boundary condi-

tions (2.22) will constitute an admissible variation. 

The above equations considered variations in the current con-

figuration. Similar variations may also be obtained in the reference

configuration by first considering an infinitesimal rotation R 

m 

ε (ζ )

of the reference configuration followed by the rotation 

˜ �(ζ ) . This

process will yield the material counter part θm ( ζ ) of θ( ζ ): 

˜ �ε (ζ ) = R ε (ζ ) · ˜ �(ζ ) = 

˜ �(ζ ) · R 

m 

ε (ζ ) = exp [ ε θ(ζ )] 

· ˜ �(ζ ) = 

˜ �(ζ ) · exp [ ε θ
m 

(ζ )] , (3.3)

where, using the properties of exponential maps, we obtain 

˜ m ˜ T 
θ(ζ ) = �(ζ ) · θ (ζ ) · � (ζ ) . (3.4) κ  
.2. The weak form of governing equations 

We now derive the weak form of the balance equations. For this

e take the inner product of (2.15) and (2.16) with arbitrary admis-

ible variations η0 ( ζ ) and ϑ( ζ ), respectively, and add the resultant

quations: ∫ 1 

0 

(
˜ n 

′ ∂ζ

∂S 
+ ̃

 n̄ 

)
· η0 + 

{
˜ m 

′ 
(

∂ζ

∂S 

)
+ 

˜ φ
′ 
0 

(
∂ζ

∂S 

)
× ˜ n + 

˜ m̄ 

}
· ϑ dζ

= 

∫ 1 

0 

A ρ ( ̈̃  u − r̈ 0 ) · η0 + ( I ρ · ˙ ˜ w + 

˜ w × I ρ · ˜ w ) · ϑ dζ . (3.5)

et the left hand side of (3.5) be defined as −G [ ̃  φ(ζ , t) , η(ζ )] , so

hat (3.5) is rewritten as 

G [ ̃  φ(ζ , t) , η(ζ )] + 

∫ 1 

0 

A ρ ( ̈̃  u − r̈ 0 ) · η0 

+ ( I ρ · ˙ ˜ w + 

˜ w × I ρ · ˜ w ) · ϑ dζ = 0 . (3.6)

he simplification of G [ ̃  φ(ζ , t) , η(ζ )] requires the establishment of

train measures and the constitutive law for the material. To this

nd, we use the strain measures and the linear-elastic costitutive

aw presented in Simo (1985) , which along with the simplifica-

ion of G [ ̃  φ(ζ , t) , η(ζ )] have been presented in Appendix A . The

ormulation presented in Appendix A is the same as in Simo and

u-Quoc (1986) except that the variables have now been mapped

o the ( ζ , t ) domain. We emphasize that the generalized strains,

iscussed in Simo (1985) , captures extension, shear in two planes,

orsion, and bending in two directions. 

The next step is to expand the acceleration terms of (3.6) in

erms of derivatives in the new, fixed domain. The translational

nd angular acceleration terms will be dealt with separately for

onvenience. Let the integral associated with translational acceler-

tion terms in (3.6) be called G L [ ̃  φ(ζ , t) , η(ζ )] , which is simplified

s follows: 

 L [ ̃  φ, η] = 

∫ 1 

0 

A ρ ( ̈̃  u − r̈ 0 ) · η0 dζ

= 

∫ 1 

0 

−A ρ

{
(1 − ζ ) 2 ˙ R 

2 
1 

R 

2 
1 

˜ u 

′ 
}

· ∂ η0 

∂ζ
+ A ρ

[
2 

˚̃
 u 

′ (1 − ζ ) ̇ R 1 

R 1 

+ ̃

 u 

′ (1 − ζ ) ̈R 1 

R 1 

+ 

˚˚̃
 u − r̈ 0 

]
· η0 dζ , (3.7)

here we have employed the right-hand side of (2.15) to expand
¨̃
 

 , integrated the double derivatives in (2.15) and imposed the

oundary condition η0 = 0 at ζ = 0 . 

A similar process is carried out for the angular acceleration in-

egral in (3.6) , which we denote by G A [ ̃  φ(ζ , t) , η(ζ , t)] . The weak

orm of these terms are found in the reference configuration,

s this simplifies subsequent linearization. The simplification of

 A [ ̃  φ(ζ , t) , η(ζ , t)] using the third, fourth and fifth equation of

2.13) , and results from (2.19) proceeds as follows: 

 A [ ̃  φ, η] = 

∫ 1 

0 

( I ρ · ˙ ˜ w + 

˜ w × I ρ · ˜ w ) · ϑ dζ

= 

∫ 1 

0 

˜ � · ( J 
ρ

· ˙ ˜ W + 

˜ W × J 
ρ

· ˜ W ) · ϑ dζ

= 

∫ 1 

0 

˜ � ·
[ 

J 
ρ

·
{

W̊ ζ + 

˙ ζ ( W 

′ 
ζ + κ̊ζ ) + 

˙ ζ 2 κ
′ 
ζ + ζ̈κζ

}
+ ( W ζ + 

˙ ζκζ ) × J 
ρ

· ( W ζ + 

˙ ζκζ ) 
] 

· ϑ dζ . (3.8)

urther progress is made by noting that (see Appendix B ): 

˚ ζ = W 

′ 
ζ + κζ × W ζ . (3.9)
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mploying expressions for time derivatives of ζ and (3.9) in

3.8) and simplifying gives: 

G A [ ̃  φ, η] = 

∫ 1 

0 

˜ � ·
[ 

J 
ρ

·
{

W̊ ζ + 

˙ ζ (2 W 

′ 
ζ + κζ × W ζ ) + 

˙ ζ 2 κ
′ 
ζ + ζ̈κζ

}
+ ( W ζ + 

˙ ζκζ ) × J 
ρ

· ( W ζ + 

˙ ζκζ ) 
] 

· ϑ dζ

= 

∫ 1 

0 

˜ � ·
[

J 
ρ

·
{

W̊ ζ + 

(1 − ζ ) ̇ R 1 
R 1 

(2 W 

′ 
ζ + κζ × W ζ ) 

+ 

(1 − ζ ) ̈R 1 
R 1 

κζ + 

(
(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

κζ

)′ } 

+ 

(
W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)
× J 

ρ
·
(

W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)]
· ϑ dζ

o proceed further we employ integration by parts to simplify the

ourth term in the integral as ∫ 1 

0 

˜ � · J 
ρ

·
(

(1 − ζ ) 2 ˙ R 

2 
1 

R 

2 
1 

κζ

)′ 

· ϑ dζ

= −
∫ 1 

0 

˜ � ·
{
κζ × J 

ρ

(
(1 − ζ ) 2 ˙ R 

2 
1 

R 

2 
1 

κζ

)}
· ϑ 

+ 

˜ � · J 
ρ

·
(

(1 − ζ ) 2 ˙ R 

2 
1 

R 

2 
1 

κζ

)
· ϑ 

′ 
dζ , (3.10) 

here we have imposed the boundary condition ϑ = 0 at ζ = 0 .

ubstituting (3.10) into the foregoing expression for G A [ ̃  φ, η] will

ive its final weak form. The weak form of the system (3.5) may,

nally be represented as 

 dyn [ ̃  φ, η] := G [ ̃  φ, η] + G L [ ̃  φ, ̃  η] + G A [ ̃  φ, ̃  η] = 0 . (3.11)

The governing equations are non-linear, so, to find a solution, it

s necessary to linearize the weak form about a proposed configu-

ation and then determine corrections to the proposed configura-

ion. The equation that needs to be solved iteratively to obtain the

orrected configuration is given by 

 dyn [ ̃  φ
∗
, η] + δG dyn [ ̃  φ

∗
, η] = 0 , (3.12) 

here G dyn [ ̃
 φ
∗
, η] is the residual force, which represents the error

n the proposed configuration 

˜ φ
∗

and δG dyn [ ̃
 φ
∗
, η] is the lineriza-

ion about ˜ φ
∗
. To obtain the expression for δG dyn [ ̃

 φ
∗
, η] we need

he linearization of time derivatives. This is now discussed. 

.3. Linearization of time derivatives 

We will now find expressions for the linearizations of time

erivatives, i.e. δ ˚̃
 u , δ ˚˚̃

 u , δW ζ , δW̊ ζ . To update fields in time we will

ely on the Newmark integration technique. 

The linearization of velocity and acceleration is standard

 Newmark 1959; Simo and Vu-Quoc 1988; Singh 2018, Section 3.3 ).

or the n + 1 st Newmark time step, the linearizations of velocity

nd acceleration are, respectively, 

(3.13) 

here 1 < α < 0 and 0 < β < 0.5 are Newmark parameters, the su-

erscript j represents the j th iteration of the Newton-Raphson root

nding process during the Newmark time step, �u 

( j) 
n +1 

is the cor-

ection in 

˜ u 

( j) 
n +1 

, �t is the time step between t n and t n +1 , and δ
enotes the directional derivative of a field, i.e. for a given vector

eld F , 

F = 

∂ F ε 
∂ε 

∣∣∣∣
ε=0 

, (3.14) 

here F ε is defined through an equation similar to (3.1) . We note

hat 

j max 
 

j=1 

�u 

( j) 
n +1 

= 

˜ u n +1 − ˜ u n , 

here j max is the number of iterations required to achieve the re-

uired accuracy in a Newmark time update. We need to obtain

inearizations of angular velocity and angular acceleration. At the

ame time, rotation rates, e.g. ˜ w ζ (ζ , t) and 

˚̃
 w ζ (ζ , t) , are defined

n terms of rotation tensors. All these objects at time t n depend

n the orthogonal group 

˜ �n (ζ ) := 

˜ �(ζ , t n ) . It is important to note

hat rotation tensors, such as ˜ �(ζ , t) , do not lie in linear vector

paces. Let the small rotational displacement in the material con-

guration between times t n and t n +1 be represented by the skew-

ymmetric tensor τm 

n (with axial vector τm 

n ). Then we may write 

˜ ( j) 

n +1 (ζ ) = 

˜ �n (ζ ) · exp [ τm ( j) 
n ] = exp [ τ( j) 

n ] · ˜ �n (ζ ) , (3.15) 

here τ( j) 
n is the spatial counterpart of τm ( j) 

n , which is the j th it-

ration of τm 

n during a Newmark time update step. Simo and Vu-

uoc (1988) then show that 

δW 

( j) 
ζ

(ζ , t n +1 ) = 

α

β�t 
˜ �

( j) T 

n · T ( τ( j) 
n ) · �θ

( j) 
n +1 

nd δW̊ 

( j) 

ζ (ζ , t n +1 ) = 

1 

β�t 2 
˜ �

( j) T 

n · T ( τ( j) 
n ) · �θ

( j) 
n +1 , (3.16) 

here �θ
( j) 
n +1 is such that ˜ �

( j+1) 

n +1 = exp [ asym (�θ
( j) 
n +1 )] · ˜ �

( j) 

n +1 , 

 ( τ) = e � e + 

| τ| / 2 

tan (| τ| / 2) 
[ 1 − e � e ] − 1 

2 

asym ( τ) (3.17) 

nd e = τ/ | τ| . From (3.15) and the definition of �θ
( j) 
n +1 , we con-

lude that 

xp [ τ( j+1) 
n ] = exp [ asym (�θ

( j) 
n +1 )] · exp [ τ( j) 

n ] . (3.18)

.4. Linearization of weak form 

We now proceed with the linearization of the weak form (3.11) ,

hich can be expressed as 

G dyn [ ̃  φ
∗
, η] = δG [ ̃  φ

∗
, η] + δG L [ ̃  φ

∗
, η] + δG A [ ̃  φ

∗
, η] . (3.19)

ote the linearization is done about a proposed configuration
˜ ∗(ζ , t) = { ̃ u 

∗(ζ , t) , ˜ �
∗
(ζ , t) } . Let the perturbed configuration be

iven by ˜ φ
∗
ε (ζ , t) = { ̃ u 

∗
ε (ζ , t) , ˜ �

∗
ε (ζ , t) } , where the perturbation is

iven as � ˜ φ
∗
(ζ , t) = { � ˜ u 

∗(ζ , t) , �˜ θ
∗
(ζ , t) } . The linearization pro-

ess will be carried out separately for each term. 

Linearization of G ( ̃  φ
∗
, η) is presented in Appendix A . Unlike

he tangent stiffness matrix obtained in non-linear FE formula-

ion of general elasticity, which is symmetric, the linearization of

 ( ̃  φ
∗
, η) yields an unsymmetric tangent stiffness matrix. Here we

rst present the linearization of G L [ ̃  φ, η] . Utilizing (3.7) , we com-

ute 

G L [ ̃ φ
∗
, η] = δ

∫ 1 

0 

−A ρ

{
(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

˜ u 
′ 
}

· ∂ η0 

∂ζ
+ A ρ

{
2 ̃̊ ′ u 

(1 − ζ ) ̇ R 1 
R 1 

+ ̃

 u 
′ (1 − ζ ) ̈R 1 

R 1 
+ 

˚˚̃
 u − r̈ 0 

}
· η0 dζ

= 

∫ 1 

0 

−A ρ

{
(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

( � ˜ u ) 
′ 
}

· ∂ η0 

∂ζ
+ A ρ

{
2 

α

(�t) β
( � ˜ u ) 

′ (1 − ζ ) ̇ R 1 
R 1 

+ ( � ˜ u ) 
′ (1 − ζ ) ̈R 1 

R 1 
+ 

1 

(�t) 2 β
� ˜ u 

}
· η0 dζ . (3.20)
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The above calculations were carried out using results discussed

in the previous section. We may perform the linearization of

G A [ ̃  φ
∗
, ̃  η] similarly. 

However, because the expression for δG A [ ̃  φ
∗
, η] is com-

plex, we prefer to write δG A [ ̃  φ
∗
, η] = δG A 1 [ ̃  φ

∗
, η] + δG A 2 [ ̃  φ

∗
, η] +

δG A �[ ̃  φ
∗
, η] , whose computations are given in Appendix C . It may

be noted that δG A 2 [ ̃  φ
∗
, η] vanishes for planar cases. The above for-

mulation when presented for planar cases matches the formulation

presented in Vu-Quoc and Li (1995) . Also, because the treatment of

finite rotations is performed in the same manner as in Simo and

Vu-Quoc (1986) , therefore the above formulation when presented

for fixed length beams in the physical domain correspond to the

expressions in Simo and Vu-Quoc (1986) . 

In this way we obtain the algebraic equation corresponding to

(3.12) . This non-linear, algebraic equation will be solved using fi-

nite elements and the Newton-Raphson method. This is described

next. 

3.5. Spatial discretization and configuration updates 

In this section we switch from direct notation to matrix nota-

tion with all vectors and tensors being evaluated in the fixed frame

( ̂ e i ). The notation for matrices and column vectors will be the same

as employed for their corresponding tensors and vectors. 

We now discuss how we spatially discretize the nonlinear al-

gebraic expression obtained from (3.12) using Galerkin projections

and how we update variables in order to implement the Newton-

Raphson method. At any time t n +1 , the domain 0 ≤ ζ ≤ 1 is divided

into multiple intervals (or elements). Shape functions are utilized

to approximate a vector field α over each element as: 

α(ζ , t n +1 ) 	 

n e ∑ 

e =1 

N e (ζ ) αe,n +1 , (3.21)

where n e is the number of nodes per element, N e ( ζ ) is the shape

function corresponding to the e th node and αe,n +1 is the value of

the vector field α at the e th node, at time t n +1 . The vector field

α can be replaced by ˜ u , ˚̃
 u , ˚˚̃

 u , ˜ W , ˚̃
 W , � ˜ u and �˜ θ to get their

corresponding approximations over the domain. The same shape

functions ( N e ) are used to approximate the admissible variations. 

In contrast, the rotation tensor ˜ �(ζ , t n +1 ) cannot be expressed di-

rectly in terms of shape functions. Instead we find the vector χ
such that ˜ � = exp { asym ( χ) } . Appendix D shows how to compute

χ given 

˜ �. The vector field χ may be approximated in terms of

shape functions as in (3.21) . Once χ is known at the nodes, ˜ � over

the elements may be found from 

˜ �(ζ , t n +1 ) = exp 

{ 

asym 

( 

n e ∑ 

e =1 

N e (ζ ) χe,n +1 

) } 

. (3.22)

For the problems discussed here we consider two node ( n e = 2 )

linear elements for discretization. After substituting the above ap-

proximations into the nonlinear algebraic equation obtained from

(3.12) , the resulting terms may be represented using matrices. This

is demonstrated below using the discretized form over the i th in-

terval (ζi , ζi +1 ) of the sum of the acceleration terms contained in

δG A 1 and δG L that are given by, respectively, (C.2) and (3.20) : 

1 

β(�t) 2 

∫ ζi +1 

ζi 

A ρ� ˜ u (ζ , t n +1 ) · η0 

+ �n +1 · J 
ρ

· �T 
n · T ( τn ) · �˜ θ(ζ , t n +1 ) · ϑ dζ

	 

1 

β(�t) 2 
[ M L ] 

{
� ˜ φ
}

· { η} (3.23)
here 

(M L ) IJ = 

[
[(m L ) IJ ] [0] 3 ×3 

[0] 3 ×3 [(i L ) IJ ] 

]
, 
{
� ˜ φ
}

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

� ˜ u e (ζ1 ) 

�˜ θe (ζ1 ) 
� ˜ u e (ζ2 ) 

�˜ θe (ζ2 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 

and 

{ η} = 

⎧ ⎪ ⎨ ⎪ ⎩ 

ηe (ζ1 ) 
ϑ e (ζ1 ) 
ηe (ζ2 ) 
ϑ e (ζ2 ) 

⎫ ⎪ ⎬ ⎪ ⎭ 

, (3.24)

n which 

[(m L ) IJ ] = 

{∫ ζi +1 

ζi 

N I A ρN J dζ

}
[ 1 ] 

nd [(i L ) IJ ] = 

∫ ζi +1 

ζi 

N I 
˜ �n +1 J ρ

˜ �
T 

n T ( τn ) N J , (3.25)

here [ 1 ] is the identity matrix. 

o evaluate the integrals over the discretized domain, for exam-

le the ones in (3.25) , we make use of Gauss quadrature integra-

ion. Implementing this requires calculations of variables at points

ther than the nodes. Except for the rotation tensor ( ̃  �), all other

ariables can be evaluated over the element by interpolating their

alues at the nodes using shape functions. The rotation tensor ˜ �
ay be found using the expression (3.22) . 

e will substitute the approximations (3.21) and (3.22) into the

inearized weak form (3.12) to obtain, in each interval (ζi , ζi +1 ) ,

atrix equations of the kind (3.23) . When these matrix equa-

ions for all intervals discretizing (0,1) are assembled, we obtain,

nally, 

 η} . [{ P ( ̃  φn +1 ) } + [ K( ̃  �n , 
˜ φn +1 )] { � ˜ φn +1 } 

]
= 0 , (3.26)

here { P } is the discretized form of the global force residual vec-

or G dyn [ ̃
 φ
∗
, η] for the predicted configuration, [ K ] is the sum of

inearized global stiffness and mass matrices found from δG [ ̃  φ
∗
, η] ,

 � ˜ φn +1 } is the incremental displacement and rotation, and { η} is

he vector representing the admissible variations. Because η is ar-

itrary, it is necessary that 

 P ( ̃  φn +1 ) } + [ K( ̃  �n , 
˜ φn +1 )] { � ˜ φn +1 } = 0 . (3.27)

he above is solved for � ˜ φn +1 which, in turn, gives the de-

ired corrected configuration 

˜ φn +1 through the use of the Newton-

aphson technique. Once convergence is achieved at t n +1 the initial

uess for the configuration at the next time step is obtained us-

ng the Newmark integration method ( Newmark 1959; Singh 2018,

ection 3.5 ). 

his concludes the description of our computational algorithm. In

he section we apply our algorithm to several problems. 

. Applications 

Before proceeding to applications, we note that we have val-

dated our computations by solving several benchmark problems,

nd these are presented in Singh (2018) , Section 4 . We will now

tilize our computations to investigate the three-dimensional dy-

amics of a spinning, vibrating, variable-length, flexible beam,

hose schematic is show in Fig. 4 . We will approach the gen-

ral situation through a sequence of increasingly complex exam-

les. The various physical properties defined in (A.3) are take to be

A = 10 6 N ; GA 1 = 10 5 N ; GA 2 = 10 5 N ; GJ = 2 × 10 3 Nm 

2 ; EI 1 =
0 3 Nm 

2 ; EI 2 = 10 3 Nm 

2 . We keep A ρ = 1 kg/m and J ρ =
iag { 5 , 3 , 2 } kgm 

2 
, where diag{.} indicates a diagonal matrix. The

ewmark parameters are kept at α = 0 . 5 and β = 0 . 25 unless oth-

rwise specified. 
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Fig. 4. Schematic of a spinning, vibrating, variable-length, deformable beam. The Z- 

axis points out of the plane. The X-Y-Z axes are fixed. The angle ψ z ( t ) is between 

the tangent to the centroidal axis at O X and the fixed X-axis. The guide rotates at a 

prescribed rate. 
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Fig. 5. (a) Temporal evolution of the rates of change of components of angular mo- 

mentum {( dH / dt ) x , ( dH / dt ) y , ( dH / dt ) z } and components of external moment { M x , M y , 

M z } about the origin O X (b) Transverse displacement (along Z-axis) of the beam’s 

free end with time. 
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.1. Spinning flexible beam with transverse vibration 

We first consider the three-dimensional dynamics of a spinning,

nd vibrating deformable beam, whose length is taken to be fixed.

he in-plane dynamics of such a beam has been considered pre-

iously by Simo and Vu-Quoc (1988) and, as validation, we match

hose results in Singh (2018) , Section 4 . 

We take a 5m beam and divide it into 10 linear elements. We

pply an initial transverse load along the Z-axis given by 

 z = 

{ 

10 t 
0 . 75 

N for 0 ≤ t ≤ 0 . 75 s , 

10(1 . 5 −t) 
0 . 75 

N for 0 . 75 s < t ≤ 1 . 5 s . 
(4.1) 

After 1.5s the load is removed, but we initiate a rotation at the

eft hinge about the Z-axis given by 

 z (t) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

π
15 

[ 
(t−1 . 5) 2 

2 
+ 

(
15 
2 π

)2 (
cos 
(

2 π(t−1 . 5) 
15 

)
− 1 

)] 
rad 

for 1 . 5 s ≤ t ≤ 16 . 5 s 

π(t − 1 . 5) − 15 π
2 

rad for t > 16 . 5 s . 

(4.2) 

his leads to a rotating beam with transverse vibrations. We intro-

ued numerical damping in the Newmark integration process to

mprove convergence using α = 0 . 6 and β = 0 . 3025 and utilizing a

ime step of �t = 0 . 005 s. The values for α and β are calculated

sing formulae presented in Hilber et al. (1977) . 

The results are plotted in Fig. 5 a which shows all three compo-

ents of the angular momentum and the external moment about

he origin O X . The match observed between the rate of change of

ngular momentum and the applied external moment confirms the

ccuracy of our computations. Fig. 5 b displays the transverse vi-

rations along the Z-axis of the beam’s free end with time. Note

hat both plots in Fig. 5 do not vary much after 16.5s, as beyond

hat time the imposed rotation rate is constant. We observe in

ig. 5 b that, as the rotation rate increases, the transverse deflection

f beam reduces. This happens because of centrifugal stiffening. 

Fig. 6 a and b display the projections of the line of centroids on

he XY and XZ-planes, respectively, at different times. While the

n-plane (X-Y) deflection is marginal, the out-of-plane deflection is

ignificant. 

.2. Double forced vibration of lengthening beam 

We now consider a beam that vibrates in two different planes

imultaneously, even as its length changes. To this end we take a

m long beam divided into 10 equal linear elements. To the tip of
he beam we apply forces given by 

 z = 

{(
t 

10 

)
× 100 sin (2 πt/ 5) N for 0 < t ≤ 10 s , 

100 sin (2 πt/ 5) N for t > 10 s 
(4.3) 

nd F y = 

{ 

(
t−1 . 25 

10 

)
× 100 sin (2 π(t − 1 . 25) / 5) N 

for 1 . 25 s < t ≤ 11 . 5 s , 

100 sin (2 π(t − 1 . 25) / 5) N for t > 11 . 5 s . 

(4.4) 

ote that the two forces F z and F y are separated by a phase dif-

erence. At the same time, we start to release the beam at t = 0

ith a velocity of 0.2 m/s, so that ˙ R 1 = 0 . 2 m/s. The various phys-

cal properties are: EA = 10 6 N ; GA 1 = 10 6 N ; GA 2 = 10 6 N ; GJ =
0 4 Nm 

2 ; EI 1 = 5 × 10 3 Nm 

2 ; EI 2 = 5 × 10 3 Nm 

2 . The values for

 ρ and J ρ are kept the same as in Section 4.1 . The time stepping

as kept at �t = 0 . 01 s while Newmark coefficients α = 0 . 55 and

= 0 . 2756 . 

Fig. 7 a and b show the projections of the trajectory of the

ree end on the XZ and YZ planes, respectively. Fig. 7 c plots the

ate of change of angular momentum about the point O X along

ith the applied external moment about that point. The expected

atch acts as a check of the computation’s accuracy. Fig. 8 a and b

emonstrate the projection of the line of centroids of the beam on

he XY and XZ planes respectively, at different times. We now see

arge deformation in both planes, which is expected given forcing

4.3) and (4.4) in both planes. 
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Fig. 6. Projection of the line of centroids of the beam at different instant of time on two different planes. 

Fig. 7. Trajectory of the beam’s free end on (a) X-Z plane and (b) Y-Z plane. (c) Components of the external moment { M x , M y , M z } and the components of the rate of change 

of angular momentum {( dH / dT ) x , ( dH / dt ) y , ( dH / dt ) z } about the origin O X of fixed frame with time. 

 

 

 

 

 

w  

t

ψ  
4.3. Spinning, lengthening beam with transverse vibration 

We now combine simultaneous rotation, out-of-plane vibration

and change of length in the same example. To this end, we take a

5m long beam divided into 10 equal linear elements. To the tip of

the beam we apply a force given by 

F z = 

{ 

10(t) 
0 . 75 

N for 0 ≤ t ≤ 0 . 75 s , 

10(1 . 5 −t) N for 0 . 75 s < t ≤ 1 . 5 s . 
(4.5)
0 . 75 
After 1.5s the load is removed, but we start to release the beam

ith a velocity of 0.2 m/s ( = 

˙ R 1 ), as well as initiate a rotation at

he left hinge about the Z-axis given by 

 z (t) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

π
15 

[ 
(t−1 . 5) 2 

2 
+ 

(
15 
2 π

)2 (
cos 
(

2 π(t−1 . 5) 
15 

)
− 1 

)] 
rad 

for 1 . 5 s ≤ t ≤ 16 . 5 s , 

π(t − 1 . 5) − 15 π
2 

rad for t > 16 . 5 s . 

(4.6)
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Fig. 8. Projection of the beam’s line of centroids at different times on two different planes. 

Fig. 9. Displacement of free end with time along the (a) Z-axis and (b) Y-axis. (c) Temporal variation of the components of external moment { M x , M y , M z } and the compo- 

nents of the rate of change of angular momentum {( dH / dT ) x , ( dH / dt ) y , ( dH / dt ) z } about the point O X . 
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A  
he time stepping was kept at �t = 0 . 005 s while Newmark coeffi-

ients α = 0 . 6 and β = 0 . 3025 . 

Fig. 9 a and b plots the transverse displacement of free end with

ime. Note that the amplitude of transverse vibration initially in-

reases due to the beam’s lengthening but, as the angular velocity

f the beam increases the vibrations start to reduce due to the ef-

ects of centrifugal stiffening. Fig. 9 c repeats Fig. 7 c and plots the

ate of change of angular momentum about the point O X along

ith the applied external moment about that point. As expected,

he two match and this acts as a check of the computation’s accu-

acy. Fig. 10 a and b display the projection of the line of centroids

n the X-Y and X-Z planes, respectively, at different times. The in-

lane deformation, while larger than in Section 4.1 , is still smaller

han the transverse deformation. 
w  
.4. Transversely vibrating and rotating beam with increasing rate of 

elease 

We finally consider an example wherein the rate of change of

ength of the beam is not constant. We take a 5m long beam di-

ided into 10 equal linear elements. To the tip of the beam we

pply a force given by 

 z = 

{ 

20(t) 
0 . 75 

N for 0 ≤ t ≤ 0 . 75 s 

20(1 . 5 −t) 
0 . 75 

N for 0 . 75 s < t ≤ 1 . 5 s 
(4.7) 

fter 1.5s the load is removed, but we start to release the beam

ith an acceleration of 0.1 m / s 2 ( = R̈ ), as well as initiate a rotation
1 
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Fig. 10. Projection of the beam’s line of centroids at different times on two different planes. 

Fig. 11. Transverse displacement of free end with time along (a) Y-axis and (b) Z-axis. (c) Temporal variation of the components of external moment { M x , M y , M z } and the 

components of the rate of change of angular momentum {( dH / dT ) x , ( dH / dt ) y , ( dH / dt ) z } about the point O X . 
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at the left hinge about the Z-axis given by 

ψ z (t) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

π
15 

[ 
(t−1 . 5) 2 

2 
+ 

(
15 
2 π

)2 (
cos 
(

2 π(t−1 . 5) 
15 

)
− 1 

)] 
rad 

for 1 . 5 s ≤ t ≤ 16 . 5 s , 

π(t − 1 . 5) − 15 π
2 

rad for t > 16 . 5 s . 

(4.8)

The time stepping was kept at �t = 0 . 005 s while the Newmark

coefficients α = 0 . 6 and β = 0 . 3025 . 
Fig. 11 a and b plot the transverse displacement of the free end

ith time. In Fig. 11 b the amplitude of transverse vibration initially

ncreases due to the beamâs lengthening but, as the angular veloc-

ty of the beam increases the vibrations start to reduce due to the

ffects of centrifugal stiffening. The amplitude of transverse vibra-

ion reduces faster in this case compared to the previous example

ecause the length of beam released at any time t > 4 s is more in

he present case. This in turn increases the centrifugal stiffening

hich is directly proportional to the beam’s length. Fig. 11 c plots

he rate of change of angular momentum about the point O X along

ith the net moment applied about that point. As expected, the
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Fig. 12. Projection of the beam’s line of centroids at different times on two different planes. 
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wo match. The moment along Z-axis increases rapidly with time

ecause of the increasing rate of release of the cable. Fig. 12 a and

 display the line of centroids on the XY-plane and XZ-plane, re-

pectively, at different times. 

. Conclusion 

In this work we have established the governing equations that

etermine the three-dimensional dynamics of a variable-length,

exible beam using Geometrically Exact beam theory. Such beams

an undergo large deformations and large rotations, with shear

eformation being taken into consideration. We incorporated the

ariable length of the beam by mapping the physical domain on to

 fixed domain at each time-step. We then developed an implicit

umerical algorithm to solve for the three-dimensional dynamics

f such beams. To this end, we found the weak form for the system

nd subsequently linearizated it before solving the resultant non-

inear algebraic equation by the Newton-Raphson method to obtain

he beam’s configuration at any given time step. Newmark time in-

egration technique, suitably modified for the orthogonal groups,

as employed to perform time updates. 

The formulation thus presented matches the results of

imo and Vu-Quoc (1988) obtained for beams of fixed length.

imilarly, for planar cases we matched the development of Vu-

uoc and Li (1995) . This confirmed the accuracy of our procedure,

hich we then utilized to investigate the three-dimensional dy-

amics of spinning, vibrating, variable-length beams through a se-

uence of increasingly complex examples. We are currently in the

rocess of extending this work to address situations wherein an

nd mass is attached to the beam. One of the potential application

f this work is in the study of release and retraction of aerostats. 

ppendix A. Evaluation of G [ ̃  φ, η] and δG [ ̃  φ, η] 

Before we proceed to the evaluation of G [ ̃  φ(ζ , t) , η(ζ )] and

G [ ̃  φ(ζ , t) , η(ζ )] , it is important to calculate internal force and

oment at beam cross-sections. These calculations make use of

train measures defined by 

˜ � = 

˜ �
T ·
[

∂ ̃  u 

∂ζ
(ζ , t) 

∂ζ

∂S 
+ 

∂ φ0 

∂S 
(S, 0) 

]
− ˆ e 3 

nd 

˜ κ = 

˜ �
T · ˜ ω (ζ , t) = 

˜ �
T · ω ζ(ζ , t) 

∂ζ

∂S 
, (A.1) 

here ˜ � and 

˜ κ are strain measures in the material configuration

 Simo, 1985 ). Strain measures in the spatial description are given

y ˜ � · ˜ � = 

˜ γ and 

˜ ω , where ˜ γ may be seen to be the difference in
he slope of line of centroids and normal to the cross-section, while

˜ 
 is the curvature of the rod. 

The constitutive law relating the reaction 

˜ R := 

{
˜ N , ˜ M 

}
to the

trains is taken to be ( Simo and Vu-Quoc, 1986; Ibrahimbegovi ́c,

995 ) 

˜ 
 = 

{
˜ N 

˜ M 

}
= 

˜ �
T ·
{

˜ n 

˜ m 

}
= C ·

{
˜ �
˜ κ

}
, (A.2) 

here C is the material elasticity tensor ( Simo and Vu-Quoc, 1986;

brahimbegovi ́c, 1995 ) 

 = diag 
[
GA 1 , GA 2 , E A, E I 1 , E I 2 , GJ 

]
. (A.3) 

he corresponding stored enery function can be found in Simo and

u-Quoc (1986) . We now proceed to evaluating G [ ̃  φ(ζ , t) , ̃  η(ζ )]

iven by 

 [ ̃  φ(ζ , t) , ̃  η(ζ )] = −
∫ 1 

0 

(
˜ n 

′ ∂ζ

∂S 
+ ̃

 n̄ 

)
· η0 

+ 

(
˜ m 

′ 
(

∂ζ

∂S 

)
+ 

˜ φ
′ 
0 

(
∂ζ

∂S 

)
× ˜ n + 

˜ m̄ 

)
· ϑ dζ . 

sing integration by parts we get 

 [ ̃  φ(ζ , t) , ̃  η(ζ )] = 

(
dζ

dS 

)∫ 1 

0 

[
˜ n ·
{

∂ η0 

∂ζ
−
(

ϑ × ∂ ̃  φ0 

∂ζ

)}
+ 

˜ m · ∂ ϑ 

∂ζ

]
dζ

−
∫ 1 

0 

( ̃ n̄ · η0 + 

˜ m̄ · ϑ ) dζ . 

t is helpful to rewrite the above equation in terms of matrices: 

 [ ̃  φ(ζ , t) , ̃  η(ζ )] = 

(
dζ

dS 

)∫ 1 

0 

( ̃  Ξ
T 
η) · ( ̃  � ˜ R ) −

(
dS 

dζ

)
η · ˜ r̄ dζ , 

(A.4) 

here 

˜ T = 

[ 

∂ 
∂ζ

1 asym 

(
˜ φ

′ 
0 

)
0 

∂ 
∂ζ

1 

] 

, η = 

[
η0 

ϑ 

]

˜ � = 

[
˜ � 0 

0 

˜ �

]
and 

˜ R = 

[
˜ N 

˜ M 

]
. 

e next compute the linearization of the strain measures: 

δ ˜ � = 

˜ �
T ·
[

∂(� ˜ u ) 

∂ζ

(
∂ζ

∂S 

)
− �˜ θ ×

{
∂ ̃  u 

∂ζ

(
∂ζ

∂S 

)
+ 

∂ ˜ φ0 

∂S 
(S, 0) 

}]
nd δ ˜ κ = 

˜ �
T · ∂(�˜ θ) 

∂ζ

(
∂ζ

∂S 

)
. (A.5) 
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The following simplifictaion of δG [ ̃  φ(ζ , t) , η(ζ )] may be found in

Simo and Vu-Quoc (1986) : 

δG [ ̃  φ, η] = 

dG [ ̃  φε , η] 

dε 

∣∣∣∣
ε=0 

= 

(
dζ

dS 

)∫ 1 

0 

d 

dε 

∣∣∣∣
ε=0 

× ( ΞT 
ε η) · ( �ε R ε ) −

(
dS 

dζ

)
η · r̄ dζ

= 

(
dζ

dS 

)∫ 1 

0 

d 

dε 

∣∣∣∣
ε=0 

( ΞT 
ε η) · ( �ε R ε ) dζ

= 

(
dζ

dS 

)∫ 1 

0 

(
d ΞT 

ε 

dε 
η · ( �ε R ε ) + ( ΞT 

ε η) · d �ε 

dε 
R ε 

+ ( ΞT 
ε η) · �ε 

d R ε 

dε 

)∣∣∣∣
ε=0 

dζ . (A.6)

The evaluations for the three terms is now carried out separately

for convenience. Evaluating the first and second term yields: 

d ΞT 
ε 

dε 
η · ( �ε R ε ) 

∣∣∣∣
ε=0 

= 

[ 

0 asym 

(
� ˜ u 

′ )
0 0 

] 

η · ( �R ) (A.7)

and 

(
ΞT 

ε η
)

· d �ε 

dε 
R ε 

∣∣∣∣
ε=0 

= ( ΞT η) ·

⎡ ⎣ 

asym 

(
�˜ θ
)

0 

0 asym 

(
�˜ θ
)⎤ ⎦ �R . (A.8)

To evaluate the third term in (A.6) we make use of the constitutive

relations (A.2) . Applying (A.1), (A.2) and (A.5) to solve the third

term gives: 

( ΞT 
ε η) · �ε 

d R ε 

dε 

∣∣∣∣
ε=0 

= ( ΞT 
ε η) · �C 

[
δ ˜ �
δ ˜ κ

]

= 

(
dζ

dS 

)
ΞT η · �C �T ΞT 

� ˜ φ . (A.9)

Adding (A .7) - (A .9) will give δG [ ̃  φ, η] which on after rearrangement

can be expressed as: 

δG [ ̃  φ, ̃  η] = 

(
dζ

dS 

)∫ 1 

0 

(�T ˜ η) · (B �T � ˜ φ) 

+ 

(
dζ

dS 

)
ΞT η · �C �T ΞT 

� ˜ φ dζ (A.10)

where 

�T = 

⎡ ⎣ 

d 
dζ

1 0 

0 d 
dζ

1 

0 1 

⎤ ⎦ and B = 

⎡ ⎣ 

0 0 asym ( −n ) 
0 0 asym ( m ) 

asym ( n ) 0 ( n � φ
′ 
0 ) − ( n . φ

′ 
0 ) 1 

⎤ ⎦ . 

(A.11)

Hence, the linearization of δG [ ̃  φ, η] can be expressed using two

terms. The first term in (A.10) is called geometric stiffness matrix

while the second represents material stiffness matrix. 

Appendix B. Derivation of κ̊ζ

To prove (3.10) we make use the basic definitions of κζ , W ζ ,

properties of skew-symmetric tensors and expansion for vector

triple products. The time derivative of κ̊ζ can be expressed as fol-

lows: 

asym 

˚(κζ

)
= 

˚( �T · �′ 
) = �̊

T · �′ 
+ �T · ˚( �
′ 
) = �̊

T · �′ + asym 

(
W 

′ 
ζ

)
− ( �

′ 
) T · �̊

= asym 

(
W 

′ 
ζ

)
+ �̊

T · �′ −
(
�̊

T · �′ )T 

= asym 

(
W 

′ 
ζ

)
+ asym 

(
W ζ

)T 
asym 

(
κζ

)
− asym 

(
κζ

)T 
asym 

(
W ζ

)
= asym 

(
W 

′ 
ζ

)
+ asym 

(
κζ

)
asym 

(
W ζ

)
− asym 

(
W ζ

)
asym 

(
κζ

)
. (B.1)

ow we attempt to find the axial vector of tensors of the above

quation: 

˚ ζ = W 

′ 
ζ + axial 

(
asym 

(
κζ

)
asym 

(
W ζ

)
− asym 

(
W ζ

)
asym 

(
κζ

))
. 

o determine the axial vector on the right side of the above equa-

ion we operate it on a random vector h : [
asym 

(
κζ

)
asym 

(
W ζ

)
− asym 

(
W ζ

)
asym 

(
κζ

)]
· h 

= κζ × ( W ζ × h ) − W ζ × ( κζ × h ) = 

(
κζ × W ζ

)
× h . (B.2)

hus, axial 
(
asym 

(
κζ

)
asym 

(
W ζ

)
− asym 

(
W ζ

)
asym 

(
κζ

))
=

κζ × W ζ

)
. 

Substituting the above result into (B.1) we obtain: 

˚ ζ = W 

′ 
ζ + κζ × W ζ . (B.3)

ppendix C. Evaluation of δG A1 [ ̃  φ, ̃  η] , δG A2 [ ̃  φ, ̃  η] and δG A �

 ̃

 φ, ̃  η] 

We have 

G A 1 [ ̃  φ, ̃  η] = 

∫ 1 

0 

˜ � · δ
[

J 
ρ

·
{

W̊ ζ + 

(1 − ζ ) ̇ R 1 
R 1 

(2 W 

′ 
ζ + κζ × W ζ ) 

+ 

(1 − ζ ) ̈R 1 
R 1 

κζ

}
− (1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

(
κζ × J 

ρ
· κζ

)]
· ϑ dζ

−
(

dS 

dζ

)∫ 1 

0 

˜ � · δ
[

J 
ρ

·
(

(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

κζ

)]
· ϑ 

′ 
dζ . (C.1)

valuating each term form the above equation separately gives 

∫ 1 

0 

˜ � · J 
ρ

· δW̊ ζ · ϑ dζ = 

1 

β�t 2 

∫ 1 

0 

˜ �n +1 · J 
ρ

· ˜ �
T 

n · T · ( τn )�θn +1 · ϑ dζ , 

2 

∫ 1 

0 

˜ � · J 
ρ

· (1 − ζ ) ̇ R 1 
R 1 

(δW 

′ 
ζ ) · ϑ dζ = 

2 α

β�t 

∫ 1 

0 

(1 − ζ ) ̇ R 1 
R 1 

˜ �n +1 · J 
ρ

·
(
( ̃  �

′ 
n ) 

T · T ( τn ) · �θn +1 + 

˜ �
T 

n · T 
′ 
( τn ) · �θn +1 + 

˜ �
T 

n · T ( τn ) · �θ
′ 
n +1 

)
·ϑ dζ , ∫ 1 

0 

˜ � · J 
ρ

· (1 − ζ ) ̇ R 1 
R 1 

δ( κζ × W ζ ) · ϑ dζ = 

∫ 1 

0 

(1 − ζ ) ̇ R 1 
R 1 

˜ �n +1 · J 
ρ

·
(

α

β�t 
asym [ κζ ] · ˜ �

T 

n · T ( τn ) · �θn +1 − asym [ W ζ ] · ˜ �
T 

n +1 · �θ
′ 
n +1 

)
·ϑ dζ , ∫ 1 

0 

˜ � · J 
ρ

· (1 − ζ ) ̈R 1 
R 1 

δκζ · ϑ dζ

= 

∫ 1 

0 

(1 − ζ ) ̈R 1 
R 1 

˜ �n +1 · J 
ρ

· ˜ �
T 

n +1 · �θ
′ 
n +1 · ϑ dζ , ∫ 1 

0 

˜ � · δ
[

J 
ρ

·
(

(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

κζ

)]
· ϑ ′ dζ

= 

∫ 1 

0 

(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

˜ �n +1 · J 
ρ

· ˜ �
T 

n +1 · �θ
′ 
n +1 · ϑ 

′ 
dζ , 

∫ 1 

0 

˜ � · δ
{ 
κζ × J 

ρ
· κζ

} 
· ϑ dζ = 

∫ 1 

0 

˜ �n +1 ·
{ 

asym [ κζ ] · J 
ρ

− asym [ J 
ρ

· κζ ] 

} 
· ˜ �

T 

n +1 · �θ
′ 
n +1 · ϑ dζ . (C.2)
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he linearization of G A 2 is expressed as 

G A 2 [ ̃  φ, ̃  η] = 

∫ 1 

0 

˜ � · δ
[(

W ζ + 

(1 − ζ ) ̇ R 1 

R 1 

κζ

)
× J 

ρ
·
(

W ζ + 

(1 − ζ ) ̇ R 1 

R 1 

κζ

)]
· ϑ dζ

= 

∫ 1 

0 

˜ � · δ( ˜ W × J 
ρ

· ˜ W ) · ϑ dζ

= 

∫ 1 

0 

˜ �n +1 ·
(

asym [ ˜ W ] · J 
ρ

− asym [ J 
ρ

· ˜ W ] 

)
·
(

α

β�t 
�T 

n · T ( τn ) · �θn +1 

+ 

(1 − ζ ) ̇ R 1 

R 1 

˜ �
T 

n +1 · �θ
′ 
n +1 

)
· ϑ dζ . (C.3) 

he linearization of G A � is evaluated as 

G A �[ ̃  φ, ̃  η] = 

∫ 1 

0 

(δ ˜ �) ·
[

J 
ρ

·
{

W̊ ζ + 

(1 − ζ ) ̇ R 1 
R 1 

(2 W 

′ 
ζ + κζ × W ζ ) 

+ 

(1 − ζ ) ̈R 1 
R 1 

κζ

}
− (1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

(
κζ × J 

ρ
· κζ

)]
· ϑ dζ

+ 

∫ 1 

0 

(δ ˜ �) ·
[(

W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)
× J 

ρ
·
(

W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)]
· ϑ dζ

−
∫ 1 

0 

(δ ˜ �) ·
[

J 
ρ

·
(

(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

κζ

)]
· ϑ 

′ 
dζ

= 

∫ 1 

0 

− ˜ �n +1 · asym 

[
J 
ρ

·
{

W̊ ζ + 

(1 − ζ ) ̇ R 1 
R 1 

× (2 W 

′ 
ζ + κζ × W ζ ) 

+ 

(1 − ζ ) ̈R 1 
R 1 

κζ

}
− (1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

(
κζ × J 

ρ
· κζ

)]
·�T 

n · T ( τn ) · �θn +1 · ϑ dζ

+ 

∫ 1 

0 

˜ �n +1 · asym 

[
J 
ρ

·
(

(1 − ζ ) 2 ˙ R 2 1 

R 2 
1 

κζ

)]
·�T 

n · T ( τn ) · �θn +1 · ϑ 

′ 
dζ

−
∫ 1 

0 

˜ �n +1 · asym 

[(
W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)
× J 

ρ
·
(

W ζ + 

(1 − ζ ) ̇ R 1 
R 1 

κζ

)]
·�T 

n · T ( τn ) · �θn +1 · ϑ dζ . (C.4) 

ppendix D. Method to find χ given �

Here, given a rotation tensor � we find the vector χ such that

= exp { asym ( χ) } . We first note that ( Argyris, 1982 ) 

xp { asym ( χ) } = I + 

sin (| χ| ) 
| χ| asym ( χ) + 

1 − cos (| χ| ) 
| χ| 2 asym ( χ) 2 , 

(D.1) 

here I is the identity tensor. We define F = asym ( χ) / | χ| , so

hat 

= I + sin (| χ| ) F + (1 − cos (| χ| )) F 2 . (D.2) 
nverting the above, we find 

1 − cos (| χ| ) 
sin (| χ| ) F = ( I + �) −1 ( � − I ) =: R . (D.3) 

rom the above we can easily show that 

 axial ( R ) | = 

1 − cos (| χ| ) 
sin (| χ| ) and 

axial ( R ) 

| axial ( R ) | = axial ( F ) = 

χ

| χ| . 
(D.4) 

iven � we can compute R and the above equations can then be

olved to find χ. Note that if χ is a solution then ( | χ| +2 π
| χ| ) χ is also

 solution. Therefore, for uniqueness of the solution we solve for

π < | χ| ≤ π . 
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