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We present a simple hydrodynamical model for the high-speed impact of slender
bodies into frictional geomaterials such as soils and clays. We model these materials
as non-smooth, complex fluids. Our model predicts the evolution of the impactor’s
speed and the final penetration depth given the initial impact speed, and the
material and geometric parameters of the impactor and the impacted material. As
an application, we investigate the impact of deep-penetrating anchors into seabeds.
Our theoretical predictions are found to match field and laboratory data very well.
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1. Introduction

High-speed impacts may occur due to both natural and manmade reasons. The
former is often caused by asteroids and meteorites, and one such incident may have
led to the extinction of the dinosaurs (Schulte et al. 2010). The latter transpire during,
say, projectile impact, or when deep-penetrating anchors are utilized. Figure 1 shows
a torpedo-shaped, heavy deep-penetrating anchor which is released from a height
above the seabed and penetrates deep into the seabed due its inertia.

Slow cratering in loose and dense granular beds has been investigated extensively
through experiments, computations and theory; see, for example, Katsuragi & Durian
(2007). Both blunt and sharp impactors were considered. High-velocity impacts with
blunt impactors have been studied in the context of impact cratering (Melosh 1989).

High-speed penetration of slender bodies is a challenging problem of physics,
with a long and venerable history beginning with Robins (1742), Euler (1922) and
Poncelet (1835). Because of its application in ballistics and projectile impact, special
attention has been directed towards slender, high-speed impactors into metallic solids
(Backman & Goldsmith 1978; Anderson Jr 1978) and soils (Omidvar, Iskander &
Bless 2014). Lately, impacts into seabeds have become important, driven by their
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FIGURE 1. A typical deep-penetrating anchor. Typical dimensions are ∼15 m in length
and ∼1 m in diameter, with a weight of ∼1 ton. Taken with permission from Intermoor.

utility in deep-penetrating anchoring systems (Medeiros Jr 2002; O’Loughlin et al.
2013). In all cases, estimating the projectile’s penetration speed and final penetration
depth is of importance.

Most analytical methods estimate penetration depths by employing the following
equation to model the impactor’s deceleration:

du
dt
= β1u2

+ β2u+ β3, (1.1)

where u is the impactor’s speed and βi are parameters found by fitting experiments;
see, for example, Allen, Mayfield & Morrison (1957a,b). The presence of the rate-
independent term β3 ensures finite-time stoppage. The linear term β2u is discarded
when the penetration speeds are high, to recover Poncelet’s equation (Poncelet 1835).
In vertical impacts, if the projectile’s mass is not negligible, the acceleration due to
gravity is explicitly included.

Theoretical attempts have been made to develop expressions for the constants
β1, β2 and β3 for slender, high-speed impactors from fundamental principles. When the
impact is on metals, these attempts have utilized hydrodynamic models (Birkhoff et al.
1948; Alekseevskii 1966; Tate 1967, 1969, 1978, 1986a,b; Yarin, Rubin & Roisman
1995) or spherical and cylindrical cavity expansion methods (Hopkins 1960; Goodier
1965; Hill 1980; Masri & Durban 2009; Warren 2016). Impact into soils (Forrestal
& Luk 1992; Durban & Masri 2004; Omidvar et al. 2014), ceramics (Satapathy
2001) and rocks (Kipp & Longscope 1973) are almost exclusively addressed through
cavity expansion methods. However, cavity expansion may not always be accurate
as it does not account for the non-spherical nature of the projectile’s nose (Rubin
2016), because of which it can fail to give adequate results even in the case of static
penetration of long piles (Baligh 1985).

The aim of this work is develop a hydrodynamic-like model for high-speed impact
of slender bodies into frictional geomaterials such as soils and clays. Besides Sharma
& Huppert (2008), no such investigation has yet been attempted. We will model these
geomaterials within the general framework of pressure- and strain-rate-dependent
Bingham fluids – which are non-smooth, complex fluids that flow once the stress
in the material violates a yield criterion. We will demonstrate the utility of our
approach in the context of deep-penetrating anchors, where our predictions of the
anchor’s penetration depth and velocity history match well with laboratory and field
experiments. We consider vertically downward impact, so that the impactor’s large
weight affects the penetration process.
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High-speed impacts of slender bodies
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êr

n̂

t̂

(b)

FIGURE 2. (a) Schematics of the impactor during penetration. See main text for
discussion. (b) The flow field (2.5) relative to the impactor. The impactor’s shape is
defined by (2.8).

2. Mathematical modelling

Figure 2(a) shows a schematic of the system. The impactor’s deceleration is given
by

a= u̇= g−
N(t, h)

m
, (2.1)

where N is the total upward vertical force exerted by the surrounding material on the
impactor, which changes with time t and penetration depth h, g is the acceleration
due to gravity, m is the impactor’s mass, and u(t) is its penetration speed (positive
downwards). The force N is found by integrating the vertical traction T over the
impactor’s surface:

N(t, h)=
∫

T dA, (2.2)

where, at any point on the impactor’s surface,

T = σnn sin ϕ + τ cos ϕ, (2.3)

in terms of the normal (σnn) and tangential (τ ) tractions and the angle ϕ shown in
figure 2(a). The main challenge is to estimate σnn and τ .

Our approach now has the following main steps: (i) we first propose a model for the
flow field u for the impacted material as it yields and flows around the impactor. Far
away from the impactor the material will remain intact (unyielded). (ii) Knowledge
of u will then allow us to compute the strain-rate field D = {∇u + (∇u)T}/2 in the
impacted material. (iii) We next select constitutive laws appropriate for materials such
as soils and clays. (iv) We combine the constitutive law with the computed strain-rate
field and the linear momentum balance to obtain the stress field σ in the impacted

861 R1-3

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 II

T 
Ka

np
ur

, o
n 

27
 O

ct
 2

01
9 

at
 1

1:
21

:4
1,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
01

8.
93

8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2018.938


I. Sharma

material. From σ the total force N on the impactor is found through (2.3) and (2.2),
and (2.1) may then be integrated to obtain the evolutions of the impactor’s penetration
and velocity.

2.1. Flow
Slender impactors have a cylindrical shaft (shank) capped by a curved nose. The flow
of the material being penetrated by such impactors, relative to the impactor, can be
approximated as a superposition of point sources upon a uniform background flow. In
the simplest case (Tate 1978; Yarin et al. 1995), for an impactor penetrating at speed
u(t) at time t, the relative velocity field of the impacted material may be obtained
from the stream function

Ψ (r, z, t)= (R2 cos φ − 2r2)u(t)/4, (2.4)

where r and z are as in figure 2(a), φ = arctan(r/z) and R is the radius of the
impactor’s shank. The stream function Ψ represents the superposition of the flow
field due to a growing spherical cavity of volumetric strength πu(t)R2 per unit time
and a background flow of rate u(t). Figure 2(b) shows the streamlines associated with
(2.4) in the frame of the impactor. Note that, in a fixed frame, it is the impactor that
penetrates at u(t) which, in turn, is controlled by (2.1).

From (2.4), with r̃ =
√

r2 + z2, we obtain velocity and strain-rate fields in the
impacted material relative to the impactor, respectively,

u(r, z, t)= u(t)(sin φ êr + cos φ k̂)
R2

4r̃2
+ u(t)k̂, (2.5)

and

D(r, z, t) =
u(t)R2

4r̃3
(cos2 φ − 2 sin2 φ)êr ⊗ êr +

u(t)R2

4r̃3
êθ ⊗ êθ

+
u(t)R2

4r̃3
(sin2 φ − 2 cos2 φ)k̂⊗ k̂−

3u(t)R2

4r̃3
sin φ cos φ(êr ⊗ k̂+ k̂⊗ êr),

(2.6)

where ⊗ denotes the outer product. The relative acceleration field a(r, z, t)= arêr +

aθ êθ is obtained by computing ∂u/∂t+ u · ∇u. In particular,

ar(r, z, t)=
R2r
4r̃3

{
u̇(t)−

3z
r̃2

u(t)2 −
R2

2r̃3
u(t)2

}
. (2.7)

We note that (i) strain rates change with the impactor’s speed u(t), (ii) far from the
impactor the flow field becomes uniform, i.e. u→ u(t)k̂ when r̃ � R, and (iii) the
strain-rate tensor’s magnitude |D| =

√
DijDij =

√
6uR2/4r̃3 so that, at any z, |D| ∼ r−3

as r→∞.
The zero-velocity streamline, which emanates from the stagnation point z = zs =

−R/2, is an ovoid of Rankine:

r= F(z)=
{(

R2
− z2
+ z
√

z2 + 2R2
)
/2
}1/2
; (2.8)
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High-speed impacts of slender bodies

this is shown in figure 2(b). We observe that the zero-velocity streamline imitates
the shape of an impactor with a near-cylindrical shank and a curved nose very
well. In fact, if the impactor’s shape was given by (2.8), then the flow would
satisfy our expectation that the material velocity normal to the impactor’s surface
vanishes. Of course, general torpedo-shaped impactors (for example, figure 1) will
not strictly satisfy (2.8). Subsequently, we will ignore these differences in shape,
and take the impactor’s shape to be the profile generated by (2.8). This assumes
that modelling the impactor’s exact profile may not greatly affect its dynamics.
This simplifying assumption is also a practical one, considering that the complex
rheology of geomaterials is itself not well understood and mathematical descriptions
incorporate many idealizations. Finally, we note that, when crucial, it is possible to
systematically improve our approximation of the impactor’s shape by introducing
point vortex sources (Tate 1986a,b).

The kinematic description (2.5) works well given the impactor’s speed and
slenderness, and because material flow around the impactor is severely confined.
However, (2.5) will be unable to capture flow detachment or changes in the flow
introduced by fluid friction. Nevertheless, we surmise that the kinematic description
(2.5) will yield useful answers, at least at leading order, for any rheology, provided
the impactor is slender and penetrates at a fast rate; for example, this held true for
projectile impact into metals (Yarin et al. 1995).

2.2. Rheology
The next step is to select appropriate constitutive models for geomaterials such as soil
and clay. Soils and clays may both be modelled as pressure-dependent Bingham fluids
(Oldroyd 1947; Prager 1961). Such fluids have a yield criterion that separates solid-
and fluid-like behaviour. Yielding in soils depends on the local pressure, but this is not
so in clays, wherein yielding is regulated by a maximum shear strength K. In either
case, the rheology postyield may be represented as

σ =−p1+
√

2KD/|D|, (2.9)

where σ is the postyield stress tensor, p = −(tr σ )/3 is the pressure and 1 is
the identity tensor. The constitutive law above is rate-independent, and should be
compared with the usual Amontons–Coulomb friction law, with K playing the role
of a ‘friction coefficient’.

The shear strength in water-saturated clays increases with vertical depth. For
simplicity we set

K = Rf k(h− z), (2.10)
where Rf accounts for the rate dependence of clay (Casagrande & Wilson 1951)
and the shear strength gradient k models the variation with depth of the maximum
shear stress. For example, in seabed clay k ≈ 1.5 kPa m−1 (Freeman, Murray &
Schüttenhelm 1988). Following Mitchell & Soga (2005) we take

Rf = 1+ λmax{ln |γ̇ /γ̇ref |, 0}, (2.11)

where the rate parameter λ is a constant that estimates the increase in the clay’s
strength per log cycle, and γ̇ and γ̇ref are magnitudes of the actual and reference
strain rates, respectively. We will estimate γ̇ as u/(2R), where u is the impactor’s
penetration speed. Laboratory tests (O’Loughlin et al. 2013) on clay estimate λ to
be in the range 0.2–1 for γ̇ref = 0.17, but suggest that in the field λ may lie within
0.15–0.2. Henceforth, we will set γ̇ref =0.17 in all our computations. Finally, the ‘max’
in (2.11) is introduced to ensure that rate effects are included only if the strain rate
γ̇ is greater than the reference strain rate γ̇ref .
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2.3. Water-saturated clays
The computation of the impactor’s dynamics will now be demonstrated in the specific
case of the penetration into seabeds of deep-penetrating anchors of the kind shown in
figure 1. For this, we will employ the rheology of seabed clay as modelled through
(2.9)–(2.11). Analysis of impacts into soils would follow the same procedure, but with
a different rheology, and this will be taken up in the future.

The stress tensor during seabed penetration is found by combining (2.6) and (2.9):

σ = −p1+
K
√

3
{(cos2 φ − 2 sin2 φ)êr ⊗ êr + eθ ⊗ êθ

+ (sin2 φ − 2 cos2 φ)k̂⊗ k̂− 3 sin φ cos φ(êr ⊗ k̂+ k̂⊗ êr)}, (2.12)

where êr and k̂ are shown in figure 2(a) and êθ = k̂ × êr. The normal traction σnn
to be utilized in (2.3) is given by n̂ · σ · n̂, where n̂ is the normal to the anchor’s
surface defined by (2.8); see figure 2(a). However, the tangential traction τ in (2.3)
is not estimated well by n̂ · σ · t̂, where t̂ is the unit tangent in the êr − k̂ plane, as
the velocity field (2.5) corresponds to an inviscid flow. Hence, we postulate that τ is
proportional to the maximum shear strength K, i.e.

τ = αK, (2.13)

where the adhesion factor α is obtained from experiments – for example, Kaolin clay
has α = 0.4 (O’Loughlin et al. 2013). Combining (2.3) with (2.8), (2.12) and (2.13),
we obtain

T(z, t)=
F′(2σrzF′ − σrr − σzzF′2)

(1+ F′2)3/2
+

αK
√

1+ F′2
, (2.14)

where F′= dF/dz and T changes with time and location z along the anchor. The first
term on the right captures the contribution to T from normal traction, while the second
term is due to tangential traction. The total vertical force N on the anchor at any time
t may now be obtained from (2.2):

N(t)= 2π

∫ L

zs

T(z, t)F(z) dz, (2.15)

where z= zs locates the anchor’s tip; see figure 2(a).
To express σ , and hence N, only in terms of the material parameters of the seabed

and the anchor’s geometry and dynamics, we need to find the pressure p. For this, we
consider linear momentum balance in the r direction:

∂σrr

∂r
+
∂σrz

∂z
+
σrr − σθθ

r
= ρsar, (2.16)

where ρs is the density of seabed clay. We then utilize (2.7) and (2.12) to obtain

∂p
∂r
=−ρs

R2r
4r̃3

{
u̇(t)−

3z
r̃2

u(t)2 −
R2

2r̃3
u(t)2

}
−

√
3Kr
r̃2

(
2+

z
K
∂K
∂z

)
, (2.17)

where the last term is due to K’s variation with depth and we recall that r̃=
√

r2 + z2.
At any time, with the anchor’s deceleration u̇ provisionally known from (2.1), the
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High-speed impacts of slender bodies

above equation is integrated along constant z-lines from the anchor’s surface at r =
F(z) to the plastic boundary at r = rp(z) – beyond which the clay remains solid and
does not flow – to obtain the pressure pa := p|r=F(z) on the anchor’s surface. Utilizing
(2.10), we find

pa = ρsg(h− z)+
[
−
ρsR2u̇

4r̃
+ ρs

(
zR2

4r̃3
+

R4

32r̃4

)
u2
+
√

3K
2h− 3z
h− z

ln r̃
]r=rp(z)

r=F(z)

, (2.18)

where we have taken the far-field pressure to be lithostatic, i.e. due to the seabed’s
weight, z = h is the location of the sea floor with respect to the anchor (figure 2a)
and [ f (r)]r=rp(z)

r=F(z) = f (rp)− f (F) for any function f (r). The first term in the brackets in
(2.18) contributes to the added mass arising from the clay’s inertia while the second
leads to the coefficient β1 in (1.1). Finally, the sea’s weight acts on both the seabed
and the anchor and may, therefore, be ignored.

To utilize (2.18) the location rp(z) of the plastic boundary has to be estimated. By
definition the seabed clay does not yield for r> rp. An exact estimate for the plastic
boundary requires the solution for the equilibrium of the unyielded material. We do
not pursue this complex plasticity calculation, given the relative simplicity of our
overall description, and because material behaviour and system geometry are rather
ill-constrained in actual scenarios. Instead, we note from (2.6) that the strain-rate’s
magnitude drops off as r−3 for large r, so that we expect the seabed to be relatively
undisturbed not too far from the anchor. We then set rp/R ≈ 4, a value which is
consistent with the large-deformation, elasto-plastic computations of Sabetamal et al.
(2016), and with estimates derived from the analytical solution of the dynamical
expansion of a spherical cavity in pressure-dependent materials (Durban & Masri
2004).

3. Results and discussion

Utilizing (2.12), (2.13) and (2.18) in (2.14) allows us to compute N from (2.15)
at any given time t. Substituting N into (2.1) then yields a second-order differential
equation for the penetration depth h. This equation, after non-dimensionalization is

(1+ 2ε2cmma)
¨h= g{1− cf (εNn +N t)}, (3.1)

where ma,Nn and N t are, respectively, the scaled added mass, and contributions from
the normal and tangential tractions to N; h= h/L is the scaled depth of penetration;
and differentiation is with respect to scaled time t = t/(U2

R/L
2), with UR being a

reference speed (for example, the impact speed U0); and ε = R/L, cm = ρsπR2L/m,
g = gL/U2

R and cf = 2πRLK/mg are, respectively, the anchor’s slenderness ratio, the
scaled mass of the displaced clay, the reduced acceleration due to gravity, and the
ratio of the drag force on the anchor, were the maximum shear strength of the clay
to act upon it, to the anchor’s weight. The values of Nn,N t and ma are obtained from
quadratures, respectively,

N t =

∫ 1

zs

αF dξ√
1+ ε2F′2

, (3.2)

Nn =

∫ 1

zs

−σ rr + 2σ rzF
′

− ε2σ zzF
′2

(1+ ε2F′2)3/2
dξ (3.3)
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FIGURE 3. Scaled penetration speed u= u/UR of an anchor as function of (a) scaled time
t, and (b) scaled depth of penetration h with time increasing along the curves as indicated.
The reference speed UR= 30 m s−1. Several scaled impact speeds U0 are explored and we
show U0 in m s−1 next to its associated curve. For the anchor: mass m= 100 metric tons;
radius R= 0.6 m; length L= 15 m. For the seabed: density ρs = 2000 kg m−3; adhesion
factor α = 0.4; rate parameter λ= 0.2; shear strength gradient k = 1500 kPa m−1. These
values are representative of deep-penetrating anchors and of seabeds made of Kaolin clay
(O’Loughlin et al. 2013).

and

ma =

∫ 1

zs

a1FF′ dξ√
1+ ε2F′2

, (3.4)

in terms of the appropriately scaled components of the stress tensor σ given in (2.12),
z= zs/L, ξ = z/L, F= F/R, F′ = dF/dξ , and a1 = εR{(ξ 2

+ F2
)−1/2
− (ξ 2

+ r2
p)
−1/2
}/4

with rp= rp/R. When non-dimensionalizing σ ’s components, the dimensionless groups
ρsgL/K (scaled lithostatic pressure) and ρsu2/K (scaled clay’s inertia) arise naturally.

Equation (3.1) may now be integrated for a given impact speed at h = 0 to
until the anchor comes to a stop to find the evolutions of the penetration speed
and depth. Figure 3 shows the results for a typical deep-penetrating anchor. From
figure 3 we observe that the anchor’s penetration speed initially grows due to gravity
overcoming the relatively low seabed resistance. As the anchor penetrates further,
the seabed’s resistance increases due to growth in both the shear strength and the
lithostatic pressure. This causes the anchor’s speed to reach a maximum, after which
it decelerates to a stop. This maximum is reached earlier for anchors whose impact
speed U0 is greater, as the seabed’s shear resistance is elevated at higher strain rates;
cf. (2.10) and (2.11). For the same reason, figure 3(a) shows that anchors with larger
U0 stop earlier. However, as expected, faster impacting anchors penetrate deeper; see
figure 3(b).

We saw in (2.14) that both normal and tangential traction on the anchor’s surface
contribute to the total force resisting the anchor’s penetration. Computations reveal
that the resistance due to shear and normal tractions are for the most parts – except
when the anchor reaches its greatest penetration speed – comparable, with the former
always being greater. Both achieve their largest value when the anchor reaches its
peak penetration speed. This is expected because of the dependence of the maximum
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FIGURE 4. (a) Comparison of predicted (solid lines) evolution of penetration speed with
penetration depth and field data (stars) obtained by Freeman et al. (1988). Numbers
identify experiments. The mass m of the impactor is noted alongside in brackets.
(b) Comparison of predicted (filled circles) final penetration depth with impact speed
and field data (open circles) of Freeman et al. (1988). The parameters utilized were:
ρ = 8000 kg m−3, R = 1.78 m, L = 3.56 m, ρs = 1400 kg m−3, α = 0.22, λ = 0.23 and
k= 1500 kPa m−1.

shear strength K on strain rate, which, in turn, is regulated by the penetration
speed. Because the shear contribution depends directly on K (cf. (2.13)) while
the normal contribution is influenced by K only through the stresses (cf. (2.12)),
at peak penetration speed, the former can, at high impact speeds, become nearly
twice the latter. As the anchor slows down the shear contribution reduces rapidly
to come close to that of the normal traction. Finally, we note that the anchor’s
dynamics depend crucially on the choice of the adhesion factor α and λ, making their
careful characterization important. Here we utilize values consistent with available
experimental data.

Figure 4 compares our theoretical predictions with field data from the Tyro 86
penetrator experiments of Freeman et al. (1988) conducted in the Atlantic Ocean at
Great Meteor East. The anchor and seabed parameters follow Freeman et al. (1988).
The lower value of the adhesion factor α and the choice of the rate parameter λ
are consistent with the characterization experiments of, respectively, Baudet & Ho
(2004) and Low et al. (2004). We investigate both the evolution of the penetration
speed u with depth h and the change in the final penetration depth hf with impact
speed U0. Figure 4(a) shows very good agreement of u’s evolution with h. There is
initial mismatch, which we suspect is due to the flow field (2.5) not being a good
model of the flow of the impacted material during the initial stages of the impact,
especially at high U0. It is possible that the material flow at the beginning of the
impact is less constrained than assumed by (2.5). At the same time, figure 4(b) shows
excellent match for the final penetration depth. We note that experiment 8612 does
not match predictions well, and we trace it to the anomalous deviation in the data at
h≈ 40 m in comparison with the data of experiment 8610.

Finally, in figure 5 we compare our theoretical predictions of the final penetration
depth hF, given the impact speed U0, with hF estimated by O’Loughlin et al. (2013)
from extensive centrifuge experiments. In these experiments, centrifuges were used
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FIGURE 5. Comparison of predicted (solid lines) final penetration depth with impact speed
and estimated from centrifuge experiments (open circles) by O’Loughlin et al. (2013).
The anchor parameters are shown in the plot. The material parameters of clay used in
experiments were (O’Loughlin et al. 2004, 2013): ρs = 2600 kg m−3, α = 0.4, λ = 0.42
and k= 1300 kPa m−1.

to create bed conditions similar to geophysical situations by augmenting the effective
acceleration field acting upon the impacted bed to 200g. The measured depth was then
multiplied by 200 to estimate actual penetration hF in the field. We find a good match,
although theory tends to generally overpredict the penetration depth when hF ' 15 m.
This overprediction is explained by the greater-than-linear increase with depth of the
shear strength K in centrifuge experiments for h & 15 m (O’Loughlin, Randolph &
Richardson 2004, figure 5).

4. Conclusion

We have proposed a model for the high-speed impact of slender bodies into
non-smooth, complex fluids. The model has the potential to incorporate a variety
of constitutive laws. We verified this for clayey seabeds by investigating the impact
of a deep-penetrating anchor. We achieved an excellent match between theory and
experiments, which is very encouraging given the model’s simplicity. Several avenues
are available for improvement. First, this is a leading-order theory, in that the stresses
are essentially due to the expansion of a spherical cavity. Effects of the impactor’s
actual shape on the stresses may be systematically included by superposing several
flow fields, as in Tate (1986a,b). Second, more accurate strength profiles can be
utilized to characterize K in (2.10). Finally, the utility of the current modelling
strategy needs to tested with other geophysical materials. In the meantime, we
have derived a leading-order model which is amenable to simple interpretation,
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straightforward numerical evaluation, and systematic improvements. We envisage that
the present approach will find further important applications in the future.
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