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a b s t r a c t 

We investigate the contact of a rigid cylindrical punch with an adhesive beam mounted on flexible end 

supports. Adhesion is modelled through an adhesive zone model. The resulting Fredholm integral equa- 

tion of the first kind is solved by a Galerkin projection method in terms of Chebyshev polynomials. Re- 

sults are reported for several combinations of adhesive strengths, beam thickness, and support flexibili- 

ties characterized through torsional and vertical translational spring stiffnesses. Special attention is paid 

to the important extreme cases of clamped and simply supported beams. The popular Johnson–Kendall–

Roberts (JKR) model for adhesion is obtained as a limit of the adhesive zone model. Finally, we compare 

our predictions with preliminary experiments and also demonstrate the utility of our approach in mod- 

eling complex structural adhesives. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Research in patterned adhesives is often motivated by the struc-

ures of natural adhesives, such as those present in the feet of

ekkos; see e.g. Hiller (1976) , and Arul and Ghatak (2008) . In con-

entional adhesives, such as thin, sticky tapes, only the top and

ottom surfaces are active. However, multiple surfaces may be ac-

ivated with appropriate patterning. With more surfaces participat-

ng in the adhesion process the adhesives show increased hystere-

is and, so, better performance. One example of a patterned adhe-

ive is the structural adhesive shown in Fig. 1 (a), which was de-

eloped by Arul and Ghatak (2008) . Fig. 1 (b) shows a possible me-

hanical model of the structural adhesive of Fig. 1 (a) that utilizes

everal interacting adhesive beams. This motivates the goal of this

aper, which is to investigate the adhesive contact of a beam; see

ig. 2 (a). 

Contact with a half-space has been well studied over the

ast century, and we refer the reader to Alexandrov and

ozharskii (2001) , and also the texts of Galin and Gladwell (2008) ,

ladwell (1980) , Johnson (1985) and Hills et al. (1993) . At the same

ime, the contact of thin layers is an active area of research in

iew of applications to electronics and computer industry; see, e.g.

arthel and Perriot (2007) , and Dalmeya et al. (2012) . In contrast,

he indentation of beams is much less studied. 

Seeking the solution to the indentation of a beam through

 strength-of-materials approach overlooks the local contact me-
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hanics. To probe the latter, it is necessary to formulate an elastic-

ty problem with appropriate boundary conditions. This is typically

 complex problem, and has prompted some alternate approaches

o adhesion less contact, as discussed in the next paragraph. To the

est of our knowledge there is no available work on the adhesive

ontact of beams. 

Two-dimensional adhesionless indentation of a beam has

een studied in the past by Keer and Silva (1970) , Keer and

iller (1983) , Keer and Schonberg (1986) , Sankar and Sun (1983) ,

un and Sankar (1985) , and Kim et al. (2014) . Keer and

iller (1983) modeled the beam as a linear elastic layer of in-

nite extent with frictionless bottom and top surfaces. First, the

lasticity problem was solved through Fourier transforms, see e.g.

neddon (1995 , p. 395–414). Then, employing the Hankel transform

 Gladwell, 1980 , p. 213) for the pressure distribution, and asymp-

otically matching the far-field displacements with those obtained

rom Euler-Bernoulli beam theory, a Fredholm integral equation of

he second kind was obtained. This equation was solved numeri-

ally. 

Sankar and Sun (1983) employed Fourier series in their in-

estigation of adhesionless contact with beams of finite length.

heir results were in good agreement with those of Keer and

iller (1983) . Recently, Kim et al. (2014) studied beam indentation

hrough asymptotics. Finite element (FE) simulations were also car-

ied out. The contact parameters, i.e. contact area and the total

oad acting on the punch, obtained through asymptotics, matched

esults of FE simulations well. In all these studies, the interaction

f the beam with the punch is non-adhesive. However, extending

hese methods to adhesive beams is difficult due to the presence

f several iterated integral transforms. 

https://doi.org/10.1016/j.ijsolstr.2018.02.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Fig. 1. (a) Structural adhesive designed by Arul and Ghatak (2008) . (b) Mechanical model of the structural adhesive in (a) employing an interconnected stack of adhesive 

beams. The rigidity of the vertical walls is modeled through torsional (stiffness k t ) and vertical translational (stiffness k s ) springs, as shown. The system is indented by a 

rigid punch, pressed down by the force P . 
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Fig. 2. (a) Indentation by a rigid cylindrical punch of an adhesive beam resting upon flexible supports. The flexible supports are modeled through torsional and vertical 

translational springs with stiffnesses k t and k s , respectively. (b) Mathematical model of the indentation process shown in (a). The inset shows details of the adhesive zone 

active near the contact edges; see text for details. The vertical deflection is exaggerated for ease of representation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

i  

l  

i  

r

 

o  

b  

c  

v  

E  

a  

1 The negative sign is introduced in order to report compressive pressure during 

contact as positive. 
2 Punati (2017) presents an exact analysis predicated on the solution of a system 

of dual integral equations in which v b ( x ) is found explicitly. However, the calcula- 

tions therein are complex, and for many practical situations the approach of this 

paper is found sufficient. 
This paper is organized as follows. We start by formulating a

mathematical model for the adhesive contact of the beam shown

in Fig. 2 (a). We will obtain a Fredholm integral equation of the first

kind that relates the contact pressure distribution with the vertical

displacement in the contact patch. Relevant conditions at the edge

of the contact zone will also be derived. This integral equation is

then solved numerically employing Galerkin projections in terms

of Chebyshev polynomials. Theoretical results are compared with

our own FE simulations whenever possible. We then explore the

effect of various parameters in the problem, viz. flexibility of end

supports, strength of adhesion, the beam’s geometry, etc. We close

with a comparison with preliminary experimental results, and an

application of our solution to complex structural adhesives, such as

the one shown in Fig. 1 (a). 

2. Mathematical model 

We begin by extending the beam of Fig. 2 (a) beyond the sup-

ports to infinity, as shown in Fig. 2 (b). The extension is done in a

manner consistent with the kinematic and kinetic constraints im-
osed by the supports. Thus, the beam is extended linearly along

ts slope at the supports. The beam may now be thought of as a

inear elastic layer of infinite length with thickness h . The beam is

sotropic and homogeneous, with Young’s modulus E and Poisson’s

atio ν . The top and bottom surfaces of the beam are frictionless. 

During indentation, a normal traction distribution −P c (x ) acts

n the top surface. 1 At this time, the vertical displacement of the

ottom surface is v b ( x ), which is typically not known. When the

ontact area is less than the beam’s thickness, we assume that

 b ( x ) may be approximated 

2 by the displacement obtained from

uler-Bernoulli beam theory when a point load of magnitude P acts

t the center of the top surface, as depicted in Fig. A.18 . The details
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f how v b ( x ) is calculated for a beam on flexible supports are pro-

ided in Appendix A . 

The governing equations for the horizontal ( u ) and vertical ( v )

isplacements in the extended beam (elastic layer) of Fig. 2 (b), as-

uming plane strain, are given by 

2 ( 1 − ν) 

1 − 2 ν

∂ 2 u 

∂x 2 
+ 

∂ 2 u 

∂y 2 
+ 

1 

1 − 2 ν

∂ 2 v 
∂ x∂ y 

= 0 (1a) 

nd 

∂ 2 v 
∂x 2 

+ 

2 ( 1 − ν) 

1 − 2 ν

∂ 2 v 
∂y 2 

+ 

1 

1 − 2 ν

∂ 2 u 

∂ x∂ y 
= 0 , (1b) 

hich reflect horizontal and vertical linear momentum balance, re-

pectively; see, e.g. Timoshenko and Goodier (1970 , p. 241) or Sadd

2005 , p. 125). The boundary conditions may be taken to be 

xy = 0 , σyy = −P c (x ) on the top surface, i.e. at y = 0 , (2a) 

nd σxy = 0 , v = v b (x ) on the bottom surface, i.e. at y = h . 

(2b) 

We now follow Sneddon (1995 , p. 402) to map the above prob-

em into Fourier space by transforming the x coordinate. Solving

or the vertical displacement in Fourier space and, then, taking the

nverse Fourier transform yields the following integral equation for

he vertical displacement of the top surface: 

 ( x, 0 ) = − 2 

πE ∗

∫ ∞ 

0 

P̄ c ( ξ ) 
sinh 

2 ξ h 

ξ ( ξ h + sinh ξ h cosh ξ h ) 
cos ξx d ξ

+ 

1 

π

∫ ∞ 

0 

v̄ b ( ξ ) 
sinh ξ h + ξ h cosh ξ h 

ξ h + sinh ξ h cosh ξ h 

cos ξx d ξ , (3) 

here E ∗ = E/ 
(
1 − ν2 

)
, 

 ̄c ( ξ ) = 

∫ ∞ 

−∞ 

−P c ( t ) cos ξ t d t and v̄ b ( ξ ) = 

∫ ∞ 

−∞ 

v b ( t ) cos ξ t d t. 

(4) 

ppendix B provides details of how (3) is obtained. For non-
imensionalizing it is more convenient to rewrite (3) as 

 ( x, 0 ) = 

2 

πE ∗

∫ ∞ 

0 

∫ ∞ 

−∞ 

P c ( t ) cos ξ t d t 
sinh 

2 ξ h 

ξ ( ξ h + sinh ξ h cosh ξ h ) 
cos ξx d ξ

+ 

1 

π

∫ ∞ 

0 

∫ ∞ 

−∞ 

v b ( t ) cos ξ t d t 
sinh ξ h + ξ h cosh ξ h 

ξ h + sinh ξ h cosh ξ h 
cos ξx d ξ , 

(5) 

here we have invoked definitions (4) of P̄ c and v̄ b . 
In contact problems the vertical displacement within the con-

act region is constrained. For example, during indentation with a

igid punch, the surface in the contact region must conform to the

hape of the punch. We now approximate the profile of the cylin-

rical punch of radius R as a parabola in the contact region, as

s appropriate if the indentation depth and the dimensions of the

ontact region are much smaller than the radius of curvature of

he punch. We set δ to be the vertical displacement of the punch.

his allows us to write the vertical displacement of the beam’s top

urface within the contact region as 

 (x, 0) = δ − x 2 

2 R 

, −a ≤ x ≤ a, (6)

here the contact region lies between −a and a . 

During contact, the pressure on the beam’s top surface depends

lso on the adhesive interaction between the beam and the punch.

his adhesive interaction is, in turn, introduced through the pres-

nce of an adhesive zone; see inset of Fig. 2 (b). Within the adhe-

ive zone the adhesive interaction is modeled through a Dugdale–

arenblatt model ( Maugis, 1992 ), which assumes the adhesion to
e of constant strength σ 0 . Thus, we may write the force distribu-

ion on the beam’s top surface as 

 c ( x ) = 

{ 

p ( x ) , | x | ≤ a 
−σ0 , a < | x | ≤ c 
0 , | x | > c, 

(7) 

here c locates the outer edge of the adhesive zone; see inset in

ig. 2 (b). Adhesive zones were introduced by Maugis (1992) in or-

er to avoid the singularity in the pressure at the contact edge

 x = ±a ) found in JKR theory. For this, it is also necessary that

here be no discontinuity in the contact pressure at the contact

dge, i.e. 

lim 

 →±a −
p ( x ) = −σ0 . (8) 

o close our mathematical description we require an additional

quation to compute the extent c of the adhesive zone. This is

btained by equating the energy release rate computed from the

−integral ( Rice, 1968 ) and the work of adhesion w , which leads to

0 δc = w, (9) 

here 

c = 

(
c 2 / 2 R 

)
− δ + v c (10) 

s the air-gap at which the adhesive forces vanish and v c = v ( c, 0 ) ;
ee inset in Fig. 2 (b). 

During non-adhesive indentation (10) is automatically satisfied

s σ0 = 0 = w . The JKR approximation is obtained in the limits

0 → ∞ and c → a , at which the energy balance (9) becomes 

K 

2 
1 

2 E ∗
= w, (11) 

here 

 1 = − lim 

x → a −

√ 

2 π( a − x ) p ( x ) (12) 

s the stress intensity factor that measures the strength of the

quare root singularity in the stress field at the contact edge; see

augis (1992) . This is equivalent to Griffith’s criterion in fracture

echanics; see e.g. Kanninen and Popelar (1985 , p. 168). In this

imit, we do not require the contact pressure end condition (8) . 

Finally, the total load acting on the punch is found by integrat-

ng the normal traction over the top surface of the beam: 

 = 

∫ ∞ 

−∞ 

P c ( x ) d x = 

∫ a 

−a 

p ( x ) d x − 2 σ0 ( c − a ) . (13)

. Non-dimensionalization 

We introduce the following non-dimensional parameters: 

 = 

a 

l 
; ϕ ( τ ) = 

aRl 

Kh 

3 
p ( a ̄τ ) ; P̄ = 

P Rl 

Kh 

3 
; k f t = 

k t l 

EI 
; k f s = 

k s l 
3 

EI 
;

= 

δR 

l 2 
; L = 

l 

R 

; λ = 2 σ0 

(
R 

πwK 

2 

)1 / 3 

; m = 

(
πw 

RK 

)1 / 3 

, 

here K = 4 E ∗/ 3 and I = h 3 / 12 is the beam’s area moment of in-

rtia. We also define the scaled variables 

{ ̄x , τ̄ , ̄c , γ̄ } = 

1 

a 
{ x, t, c, h } ; { ̂  τ , ˆ γ } = 

1 

l 
{ t, h } ;

{ ω, ω̄ , ˆ ω } = 

{
ξh, 

ω 

γ̄
, 
ω 

ˆ γ

}
;

{
ϑ ( ̄x , 0 ) , ϑ b 

(
ˆ τ
)}

= 

R 

l 2 

{
v ( ̄x , 0 ) , v b 

(
l ̂  τ

)}
;

Ī = 

I 

h 

3 
= 

1 

12 

; �( τ ) = 

aRl 

Kh 

3 
P c ( a ̄τ ) . 
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3 Pandey et al. (2014) and Plaut and Virgin. (2017) showed that the curved non- 

linear beams may also assume an asymmetric configuration even when the point 

load is applied at the center of the beam. Here, the initial configuration of the beam 

is not curved and the beam is not non-linear. Hence, the beam deforms symmetri- 

cally. 
In terms of these variables the non-dimensional vertical displace-

ment of the top surface (5) becomes 

ϑ ( ̄x , 0 ) = 

8 ̂  γ 3 

3 π

∫ ∞ 

0 

∫ ∞ 

−∞ 

�( ̄τ ) cos ω̄ ̄τ d ̄τ K 1 ( ̄ω , ̄x ) d ω 

+ 

1 

π ˆ γ

∫ ∞ 

0 

∫ ∞ 

−∞ 

ϑ b 

(
ˆ τ
)

cos ˆ ω ̂  τ d ̂  τ K 2 ( ̄ω , ̄x ) d ω, (14)

with the kernels 

K 1 ( ̄ω , ̄x ) = 

sinh 

2 ω 

ω ( ω + sinh ω cosh ω ) 
cos ( ̄ω ̄x ) 

and K 2 ( ̄ω , ̄x ) = 

sinh ω + ω cosh ω 

ω + sinh ω cosh ω 

cos ( ̄ω ̄x ) . 

From (7) , we obtain the non-dimensional pressure on the beam’s

top surface: 

�( ̄τ ) = 

{ 

ϕ ( ̄τ ) , | ̄τ | ≤ 1 

−λAm/ 2 ̂  γ 3 L, 1 < | ̄τ | ≤ c̄ 
0 , | ̄τ | > c̄ . 

(15)

Combining (14) and (15) yields 

ϑ ( ̄x , 0 ) = −8 ̂  γ 3 

3 π

∫ ∞ 

0 

ϕ̄ ( ̄ω ) K 1 ( ̄ω , ̄x ) d ω 

− 8 λAm 

3 πL 

∫ ∞ 

0 

ϕ̄ 0 ( ̄ω ) K 1 ( ̄ω , ̄x ) d ω 

+ 

1 

π ˆ γ

∫ ∞ 

0 

ˆ ϑ b 

(
ˆ ω 

)
K 2 ( ̄ω , ̄x ) d ω, (16)

with 

ϕ̄ ( ̄ω ) = −
∫ 1 

−1 

ϕ ( ̄τ ) cos ( ̄ω τ̄ ) d ̄τ , 

ϕ̄ 0 ( ̄ω ) = 

∫ c̄ 

1 

cos ( ̄ω τ̄ ) d ̄τ and 

ˆ ϑ b 

(
ˆ ω 

)
= 

∫ ∞ 

−∞ 

ϑ b 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ .

(17)

Non-dimensionalizing the displacement in the contact region (6) ,

the contact pressure end condition (8) , and the energy Eq. (9) lead

to, respectively, 

ϑ( ̄x , 0) = 
 − 1 

2 

x̄ 2 A 

2 for − 1 ≤ x̄ ≤ 1 , (18)

ϕ ( ±1 ) = − λ Am 

2 ˆ γ 3 L 
(19)

and 1 = 

πλL 2 

2 m 

2 

[
c̄ 2 A 

2 

2 

− 
 + ϑ c 

]
, (20)

where ϑ c = ϑ ( ̄c , 0 ) and 
 is the non-dimensional displacement of

the punch. Combining (11) and (12) , and non-dimensionalizing, we

obtain 

lim 

x̄ → 1 −

√ 

( 1 − x̄ ) ϕ ( ̄x ) = − m 

2 πL 

(
l 

h 

)3 
√ 

3 Am 

L 
, (21)

which replaces (19) and (20) whenever we invoke the JKR approx-

imation. 

The total non-dimensional load acting on the punch is found

from (13) : 

P̄ = 

∫ 1 

−1 

ϕ ( ̄τ ) d ̄τ − λAm 

ˆ γ 3 L 
( ̄c − 1 ) . (22)

Finally, evaluating (16) in the contact region, i.e. for −1 ≤ x̄ ≤ 1 ,

and employing (18) we obtain 
− 1 

2 

x̄ 2 A 

2 = −8 ̂  γ 3 

3 π

∫ ∞ 

0 

ϕ̄ ( ̄ω ) K 1 ( ̄ω , ̄x ) d ω 

− 8 λAm 

3 πL 

∫ ∞ 

0 

ϕ̄ 0 ( ̄ω ) K 1 ( ̄ω , ̄x ) d ω 

+ 

1 

π ˆ γ

∫ ∞ 

0 

ˆ ϑ b 

(
ˆ ω 

)
K 2 ( ̄ω , ̄x ) d ω. (23)

his is a Fredholm integral equation of first kind; see Polyanin and

anzhirov (2008 , p. 573). Indeed, recall that we have assumed that

 b may be found approximately from Euler-Bernoulli theory after

ubjecting a beam to a concentrated load P at its midspan. We now

olve the above equation, along with boundary conditions (19) and

20) , for the contact pressure ϕ ( ̄x ) , displacement 
 and the loca-

ion c̄ of the adhesive zone’s edge, at a given contact area A . 

. Numerical solution 

The integral equation (23) does not admit an analytical solu-

ion due to the complex kernels present. Thus, we solve it numeri-

ally. To this end, we approximate the unknown pressure distribu-

ion p ( x ) in the contact region through a series of Chebyshev poly-

omials. Chebyshev polynomials are chosen due to their spectral

onvergence; see Mason and Handscomb (2003 , p. 63). 

The unknown non-dimensional pressure distribution is ex-

ressed as a series of Chebyshev polynomials of the first kind, viz.

 ( ̄τ ) = − λAm 

2 ̂  γ 3 L 
+ 

1 √ 

1 − τ̄ 2 

N ∑ 

n =0 

b 2 n T 2 n ( ̄τ ) , (24)

here b 2 n are unknown constants that are to be found. Only even

hebyshev polynomials are considered as the problem is symmet-

ic 3 about the origin. The constant term in the approximation is in-

roduced to explicitly account for the continuity condition (19) that

s imposed on the contact pressure at the edge of the contact zone.

he square root singularity in the approximation is chosen as it is

he weight function for Chebyshev polynomials of the first kind

nd also to explicitly take care of the singularity found in the gen-

ral solution to the contact pressure in a contact problems; see,

.g. Gladwell (1980 , p. 63, 260). 

Employing (24) to evaluate the integrals ϕ̄ ( ̄ω ) and ϕ̄ 0 ( ̄ω ) from

17) , we obtain, respectively, 

¯ ( ̄ω ) = 

λAm 

ˆ γ 3 L 

sin ω̄ 

ω̄ 

−
N ∑ 

n =0 

b 2 n α2 n ( ̄ω ) (25)

nd ϕ̄ 0 ( ̄ω ) = 

1 

ω̄ 

( − sin ω̄ + sin ω̄ ̄c ) , (26)

here 

2 n ( ̄ω ) = 

∫ 1 

−1 

1 √ (
1 − τ 2 

)T 2 n ( ̄τ ) cos ω̄ ̄τ d ̄τ . (27)

ppendix C provides details of how α2 n ( ̄ω ) are computed. Com-

ining (22) and (24) , we find the total load acting on the punch to

e 

 ̄= πb 0 − λAm 

ˆ γ 3 L 
c̄ . (28)
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w  
he displacement of the beam’s bottom surface ˆ ϑ b 

(
ˆ ω 

)
may, with

28) , be written as 

1 

π ˆ γ
ˆ ϑ b 

(
ˆ ω 

)
= 

4 

3 ̂  γ Ī 
(
1 − ν2 

)(
b 0 − λAm ̄c 

π ˆ γ 3 L 

)
ˆ ϑ p 

(
ˆ ω 

)
, (29) 

here Ī is the scaled area moment of inertia, and the exact form

f ˆ ϑ p depends upon how the beam is supported at its ends; see

ppendix A . 

The vertical displacement in the contact region may be ex-

ressed in terms of Chebyshev polynomials as 

− 1 

2 

x̄ 2 A 

2 = 

N ∑ 

n =0 

a 2 n T 2 n ( ̄x ) = 

(

 − A 

2 

4 

)
T 0 ( ̄x ) − A 

2 

4 

T 2 ( ̄x ) . (30)

mploying expansions (24) –(30) in the integral equation (23) , we

btain 

N 
 

n =0 

a 2 n T 2 n ( ̄x ) = 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

(1) 
2 n ( ̄x ) −

8 λAm 

3 πL 
J 

(1) ( ̄x ) 

+ 

4 

3 ̂  γ Ī 
(
1 − ν2 

)(
b 0 − λAm ̄c 

π ˆ γ 3 L 

)
J 

(2) ( ̄x ) , (31) 

here 

J 

(1) 
2 n ( ̄x ) = 

∫ ∞ 

0 

α2 n ( ̄ω ) K 1 ( ̄ω , ̄x ) d ω, 

J 

(1) ( ̄x ) = 

∫ ∞ 

0 

sin ω̄ c̄ 

ω̄ 

K 1 ( ̄ω , ̄x ) d ω 

nd J 

(2) ( ̄x ) = 

∫ ∞ 

0 

ˆ ϑ p 

(
ˆ ω 

)
K 2 ( ̄ω , ̄x ) d ω. 

e evaluate the above integrals at any x̄ through the Clenshaw–

urtis quadrature ( Press et al., 1992 , p. 196). We now follow

ladwell (1980 , p. 267) and utilize Galerkin projections to solve

31) for the unknown coefficients b 2 n . To this end, we multiply

oth sides of (31) by T 2 m 

( ̄x ) / 
√ 

1 − x̄ 2 , for m = 0 , · · · , N, and in-

egrate from x̄ = −1 to x̄ = 1 . This yields the following system of

 + 1 linear algebraic equations: 

N 
 

n =0 

a 2 n J nm 

= 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

(1) 
nm 

− 8 λAm 

3 πL 
J 

(1) 
m 

+ 

4 

3 ̂  γ Ī 
(
1 − ν2 

)(
b 0 − λAm ̄c 

π ˆ γ 3 L 

)
J 

(2) 
m 

, (32) 

here 

J nm 

= 

∫ 1 

−1 

T 2 n ( ̄x ) T 2 m 

( ̄x ) √ 

1 − x̄ 2 
d ̄x , J 

(1) 
nm 

= 

∫ 1 

−1 

J 

(1) 
2 n ( ̄x ) T 2 m 

( ̄x ) √ 

1 − x̄ 2 
d ̄x , 

 

(1) 
m 

= 

∫ 1 

−1 

J 

(1) ( ̄x ) T 2 m 

( ̄x ) √ 

1 − x̄ 2 
d ̄x and J 

(2) 
m 

= 

∫ 1 

−1 

J 

(2) ( ̄x ) T 2 m 

( ̄x ) √ 

1 − x̄ 2 
d ̄x . 

he foregoing integrals are evaluated through a Gauss–Chebyshev

uadrature ( Gladwell, 1980 , p. 260). 

Equations for b 2 n , 
 and c̄ are now obtained. Employing the

xpansion (24) in the contact pressure end condition (19) yields 

 0 + b 2 + · · · + b 2 N = 0 . (33)

he energy balance (20) provides 

πλL 2 

2 m 

2 

(
c̄ 2 A 

2 

2 

− 
 + ϑ c 

)
= 1 , (34) 

here the non-dimensional displacement of the punch 
= 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

(1) 
2 n ( 0 ) − 8 λAm 

3 πL 
J 

(1) ( 0 ) 

+ 

4 

3 ̂  γ Ī 
(
1 − ν2 

)(
b 0 − λAm ̄c 

π ˆ γ 3 L 

)
J 

(2) ( 0 ) , (35) 

nd the air gap at the end of the adhesive zone is 

 ( ̄c ) = 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

(1) 
2 n ( ̄c ) −

8 λAm 

3 πL 
J 

(1) ( ̄c ) 

+ 

4 

3 ̂  γ Ī 
(
1 − ν2 

)(
b 0 − λAm ̄c 

π ˆ γ 3 L 

)
J 

(2) ( ̄c ) . (36) 

Finally, we have N + 1 equations from (32) and one each from

33) and (34) , for a total of N + 3 equations. For a given contact

rea A , the total number of unknowns in this problem are also

 + 3 : the unknown coefficients b 2 n , with n = 0 , · · · , N in the ex-

ansion (24) of the contact pressure ϕ ( ̄x ) , the displacement 
 of

he punch, and the location c̄ of the adhesive zone’s edge. 

The system of Eqs. (32) –(34) are linear in b 2 n and 
, but non -

inear in c̄ ; cf. (34) . Thus, an iterative procedure is followed be-

inning with an initial guess for c̄ . At any c̄ , (32) and (33) are

olved for b 2 n and 
. These b 2 n and 
 must satisfy (34) at the

urrent value of c̄ . If (34) is not satisfied, then the value of c̄ is up-

ated through a Newton–Raphson root finding algorithm; see, e.g.

hatterjee (2002) . We continue to iterate until a consistent set of

 2 n , 
 and c̄ is found. Care should be taken while finding the adhe-

ive zone size c̄ , as it depends sensitively on the initial guess, and

n the root finding algorithm that is employed. Once b 2 n , 
 and c̄

re found, the contact pressure ϕ ( ̄x ) and the total load P̄ may be

btained from (24) and (28) , respectively. 

. Finite element simulations 

For comparison later, we will also solve the non-adhesive

‘Hertzian’) contact of a rigid punch with a beam through the fi-

ite element (FE) method. We employ the commercial FE package

BAQUS. While ABAQUS does provide some cohesive zone models

hat may be employed to simulate adhesive contact, they are not

asily compared with the Dugdale–Barenblatt model that we em-

loy. Thus, we restrict comparisons with FE results to non-adhesive

ontact. We also limit FE simulations to clamped and simply sup-

orted beams. 

In our FE simulations, the beam is modeled as a linear elas-

ic layer with Young’s modulus E = 20 0 0 MPa and Poisson’s ratio

= 0 . 3 . The beam’s thickness and half-span are taken as h = 4 mm

nd l = 40 mm, respectively. We note that these material proper-

ies are not typical of beams employed in structural adhesives, for

xample by Arul and Ghatak (2008) . However, these properties are

elected as their magnitudes allow us to easily distinguish the ef-

ect of external inputs to the punch. 

The cylindrical punch has radius R = 225 mm and Young’s mod-

lus E p = 2 × 10 6 MPa - a thousand times the Young’s modulus

f the beam. A high E p is chosen in order to approximate a rigid

unch. 

In our FE analysis, plane-strain elements are considered for

oth the beam and the punch. The load is applied on the punch.

he remaining contact parameters, i.e. contact pressure, contact

rea, and the displacement of the punch, are obtained after post-

rocessing the computation’s output. These parameters are now

ompared with the semi-analytical results of Section 4 . 

. Results: non-adhesive (‘Hertzian’) contact 

We first investigate the adhesionless contact of a rigid punch

ith elastic beams. We will consider beams that are clamped, sim-
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Fig. 3. Non-adhesive contact of a clamped beam. Non-dimensional contact pressures (a) ϕ ( ̄x ) and (b) ap ( ̄x ) /P are shown. The beam’s slenderness ratio l/h = 10 . Several 

contact areas a are investigated by varying a / h , which are noted next to their associated curves. Solid lines are results obtained from the semi-analytical procedure of 

Section 4 . Dashed lines in (a) correspond to FE simulations of Section 5 . Open-circles in (b) represent the solution for an elastic half-space. Results of Keer and Miller (1983) , 

when available, are shown in (b) by filled circles. 
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ply supported, or rest on flexible supports. Some results will be

compared with FE simulations of Section 5 . 
Equations for the indentation of a non-adhesive beam are ob-

tained by setting λ = 0 in (32) : 

N ∑ 

n =0 

a 2 n J nm 

= 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

( 1 ) 
nm 

+ 

4 b 0 

3 ̂  γ Ī 
(
1 − ν2 

)J 

( 2 ) 
m 

for m = 0 , · · · , N. 

(37)

The contact pressure vanishes at the edge x̄ = ±1 of the contact

zone, so that (33) holds. The energy condition (34) is now re-

dundant. The N + 2 equations that comprise (33) and (37) are to

be solved for the N + 2 unknowns b 2 n (n = 0 , · · · , N) and 
 for a

given choice of A . The contact pressure distribution and the total

load are then found from (24) and (28) , respectively, after setting

λ = 0 . 

Computations are carried out with N = 5 , i.e. the expansion

(24) is truncated at the Chebyshev polynomial T 10 . In all cases

we report the response of contact area and punch’s displace-

ment against the total load acting on punch in the main text. In

Appendix D , we report the behavior of contact area with the dis-

placement of punch. 

6.1. Clamped beam 

A clamped beam is obtained in the limit of k 
f 
s , k 

f 
t → ∞ . Thus,

ˆ ϑ p 

(
ˆ ω 

)
is given by (A.15) , which then enters into the computation

of J 

( 2 ) 
m 

in (37) . The unknown contact pressure distribution ϕ ( ̄x ) is

obtained by solving (37) and (33) . 

We compare the results of our semi-analytical procedure of

Section 4 with FE simulations in Fig. 3 (a) and with the results of

Keer and Miller (1983) in Fig. 3 (b). We observe from Fig. 3 that,

when the ratio a / h of the contact area to the beam’s thickness is

low, the maximum contact pressure is obtained at the center of

the contact region. We also find from Fig. 3 (b) that at low a / h ra-

tios the pressure profiles are similar to the pressure distribution

obtained for indentation into an elastic half-space. Increasing the
 / h ratio – which, for a given beam (fixed h and l ) corresponds to

ncreasing the load, as the contact area increases – causes the pres-

ure at the center of the contact region to decrease, but increase

ear its ends; thus, the pressure profiles acquire a double-humped

haracter. Our semi-analytical results are in good agreement with

hose of FE simulations, and the theoretical results of Keer and

iller (1983) for a / h � 1; see Fig. 3 (a) and (b), respectively. For

 / h > 1, our assumption that the displacement of the beam’s bot-

om surface may be approximated through Euler-Bernoulli beam

heory breaks down. This causes the semi-analytical results to de-

iate from those of FE computations in Fig. 3 (a). 

We have followed Keer and Miller (1983) in plotting ap ( ̄x ) /P 

long the vertical axis in Fig. 3 (b). A match employing this scale

ay not guarantee a correspondence of the actual pressure pro-

les ϕ ( ̄x ) or p ( ̄x ) . This is because the total load P in the denomi-

ator of ap ( ̄x ) /P is calculated by integrating ϕ ( ̄x ) in the numerator.

hus, even if a constant factor is missed in p ( ̄x ) , the ratio ap ( ̄x ) /P 

ill remain unaffected. Given this, the comparison of pressure pro-

les shown in Fig. 3 (a) is more illuminating. Finally, the pressure

rofiles in Fig. 3 (b) do not vary much with the slenderness ration

 / h . These plots may therefore be utilized to estimate pressures at

ther l / h as well. 

Next, the variation of the contact area A and the displacement

of the punch with the total load P̄ are shown in Fig. 4 . Results

f both clamped and simply supported beams (discussed in the

ext section) are shown. From Fig. 4 (a) we find that to obtain the

ame contact area A , a clamped beam requires higher load com-

ared to the simply supported beam. This outcome is expected,

s the rotational play at the ends of the clamped beam is lower

han that of a simply supported beam. Thus, the contribution to

ertical displacement 
 from the beam’s bending is lowered in

he case of a clamped beam. Similarly, a clamped beam wraps less

bout the punch, thereby lowering the contact area at given load.

he clamped beam’s greater bending stiffness compared to that

f a simply supported beam is clearly demonstrated by Fig. 4 (b)

hat plots the deflection of the beam’s center point – which equals

he punch’s displacement 
 – against the total load P̄ . The lin-
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Fig. 4. Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. Variation of (a) the contact area A and (b) the punch’s displacement 
 are plotted as a 

function of the total load P̄ acting on the punch. The beam’s slenderness ratio l / h = 10. Solid lines are results obtained from the semi-analytical procedure of Section 4 . Filled 

circles correspond to FE simulations of Section 5 . Predictions of Sankar and Sun (1983) are shown by open circles, when available. 
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Fig. 5. Non-adhesive contact of clamped beams. Variation of (a) the contact area A and (b) the punch’s displacement 
 with total load P̄ are shown. Different slenderness 

ratios l / h are considered and these are noted either next to their associated curves or in the legend. 

e  

o  

F  

n  

a  

r

 

i  

T  

e  

u  

t  

s

 

t  

n  

i  

p  

c  

d  

m  

c  
ar response of 
 with P̄ is not unexpected as the displacement

f the beam’s bottom surface is obtained from beam theory. From

ig. 4 (and also Fig. D.19 ) it is evident that end supports have sig-

ificant bearing on the beam’s indentation. Finally, in Fig. 4 , we

gain find a good match both with FE simulations and with the

esults of Sankar and Sun (1983) . 

As mentioned in Section 5 , the material parameters employed

n FE simulations may not be relevant for typical applications.

hus, in Fig. 5 we report results with parameters more commonly

ncountered. Following Dalmeya et al. (2012) , the Young’s mod-

lus and Poisson’s ratio of the beam are taken corresponding to
hose observed in soft materials: E = 0 . 083 MPa and ν = 0 . 4 , re-

pectively. The beam’s geometry remains the same as before. 

The contact area A is plotted against the total load acting on

he punch P̄ in Fig. 5 (a) for clamped beams of different slender-

ess ratios l / h . A more slender beam is less resistant to bend-

ng. Thus, beams with higher l / h should require less load P com-

ared to lower l / h to achieve the same contact area a . But, the

urves in Fig. 5 (a), do not conform to this expectation, as the non-

imensional terms A and P̄ are expressed using the beam’s geo-

etric parameters, i.e. l and h . This phenomenon is demonstrated

learly in Fig. D.20 , where we plot the variation of contact area
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Fig. 6. Non-adhesive contact of a simply supported beam. Non-dimensional contact pressure (a) ϕ ( ̄x ) and (b) ap ( ̄x ) /P are shown. Several contact areas are investigated by 

varying a / h as noted next to the associated curves, while keeping l/h = 10 . Solid lines are results obtained from the semi-analytical procedure of Section 4 . Dashed lines in 

(a) correspond to FE simulations of Section 5 . Open circles in (b) represent the solution for an elastic half-space. Results of Keer and Miller (1983) , when available, are shown 

in (b) by filled circles. 
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Fig. 7. Non adhesive contact of beams on flexible supports. The variation of (a) contact area A and (b) punch’s displacement 
 are plotted as a function of the total load P̄ 

acting on the punch. The beam’s slenderness ratio l/h = 10 . The vertical translational spring’s stiffness k f s = ∞ . Various torsional springs are considered and their stiffnesses 

k f t are indicated next to their associated curves. Open and filled circles represent results for simply supported and a clamped beams, respectively. 
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and punch displacement with the variation in total load employ-

ing new non-dimensional parameters (cf. (40) ) that are free from

both l and h . 

Finally, in Fig. 5 (b) we plot variation of the displacement 
 of

the punch with the total load P̄ for different l / h ratios. We ob-

serve that, our choice of non-dimensionalization (cf. Section 3 ) for

the punch’s displacement and the total load allows the curves in

Fig. 5 (b) to collapse onto a single line. This is not seen for other

scalings, cf. Sections 7 and 8 , where we report results for adhesive

contact. We again expect the punch’s displacement 
 to be high
or more slender beams. The scaled variables in Fig. 5 (b) are un-

ble to reveal this phenomenon correctly and we refer the reader

o Fig. D.20 (b) where this is observed clearly. 

.2. Effect of end conditions 

We obtain results for a simply supported beam in the limit

 

f 
s → ∞ and k 

f 
t → 0 . The vertical displacement of the bottom sur-

ace is given by (A.16) . The contact pressure ϕ ( ̄x ) is then found by

olving (37) and (33) , and invoking (24) . The behavior of a simply
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Fig. 8. Non-adhesive contact of beams on flexible supports. The variation of (a) contact area A and (b) the adjusted punch’s displacement 
 − 
l are plotted as a function 

of the total load P̄ acting on the punch. The inset in (b) shows the variation of the punch’s displacement 
 with the total load P̄ . The beam’s slenderness ratio l/h = 10 . The 

torsional spring stiffness k f t = ∞ . Various vertical translational springs are considered and their stiffnesses k f s are indicated either in the legend or next to their associated 

curves. Filled circles in the inset in (b) represent results for a clamped beam. 
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Fig. 9. Adhesive contact of clamped beams with the JKR approximation. Variation of (a) the contact area ˆ A and (b) the punch’s displacement ˆ 
 with the total load ˆ P . The 

beam’s slenderness ratio l/h = 10 . Solid line correspond to l = 40 mm and h = 4 mm, while the open circles are for a beam with l = 80 mm and h = 8 mm. 
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upported beam is qualitatively similar to that of a clamped beam,

ut differs quantitatively. 

Fig. 6 repeats Fig. 3 for simply supported beams and com-

are our semi-analytical results with those of FE simulations, and

eer and Miller (1983) . As before, we find good agreement be-

ween all three approaches for a / h � 1. 

Contrasting Figs. 3 (a) and 6 (a) we find that, at the same a / h ,

ressures found in a simply supported beam are lower compared

o those in a clamped beam. Thus, the total load P̄ required to

chieve the same contact area, for clamped and simply supported

eams of the same thickness, is very different. This reinforces the
 t  
mportance of correctly modeling end supports in beam indenta-

ion. Interestingly, because of the manner in which the contact

ressure is scaled, Figs. 3 (b) and 6 (b) are nearly the same. 

Finally, we report results on the non-adhesive contact of beams

esting on flexible supports with parameters utilized to generate

ig. 5 . Again, for beams with slenderness ratio l/h = 10 , the contact

rea A and the punch’s displacement 
 are plotted against the to-

al load P̄ acting on the punch in Figs. 7 and 8 . Fig. 7 shows results

or several torsional spring stiffnesses k 
f 
t after setting the vertical

ranslational spring’s stiffness k 
f 
s to infinity. Such a beam may be

hought of as a simply supported beam with some resistance to
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Fig. 10. Adhesive contact of clamped beams with the JKR approximation. Left column reports the variation of contact area ˆ A with total load ˆ P , while the right column plots 

the change of punch’s displacement ˆ 
 with ˆ P . Results in the top row are obtained by setting l = 40 mm and varying h as shown, while those in the bottom row have 

h = 4 mm but different l , as indicated. Inset in (b) is included to allow comparison with (d); filled circles in the inset represent results from (d) at the corresponding l / h . 
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rotation at the ends, or a beam whose clamped ends allow some

rotational play. Results lie between those obtained for clamped and

simply supported beams. Expectedly, increasing k 
f 
t shifts the re-

sults towards those of a clamped beam, and decreasing it yields

results close to those of a simply supported beam. This is seen

clearly in Fig. 7 . 

Fig. 8 repeats Fig. 7 , but this time keeping k 
f 
t as infinity and

varying k 
f 
s . We find that increasing k 

f 
s does not affect the varia-

tion of A with P̄ , but the dependence of 
 on P changes; see the

inset in Fig. 8 (b). The latter change is, however, due to the verti-

cal displacement 
l of the beam’s spring supports. The presence

of 
l shifts the datum downwards, so that indentation now initi-

ates from y = 
l , rather than from y = 0 . Once we correct for 
l 

we find that displacement plots in the inset of Fig. 8 (b) are also

unaffected by variation in k 
f 
s . 

7. Results: adhesive contact - JKR approximation 

We now consider adhesive contact of beams after invoking the
JKR approximation, previously discussed in Sections 2 and 3 . Thus,
we need to solve the integral equation (23) along with energy bal-
nce (21) , in the limit of the strength of the adhesion completely
ominating elastic stiffness, i.e. λ→ ∞ , while the adhesive zone
ecomes infinitesimally small, so that c̄ → 1 . Employing expansion
24) for the contact pressure, (23) and (21) become, respectively, 

N 
 

n =0 

a 2 n J nm 

= 

8 ̂  γ 3 

3 π

N ∑ 

n =0 

b 2 n J 

( 1 ) 
nm 

+ 

4 b 0 

3 ̂  γ Ī 
(
1 − ν2 

)J 

( 2 ) 
m 

for m = 0 , · · · , N 

(38)

nd 

 0 + b 2 + · · · + b 2 N = − m 

2 πL 

(
l 

h 

)3 
√ 

6 Am 

L 
. (39)

From hereon, we follow Maugis (1992) and employ the non-

imensional parameters 

ˆ 
 = 

AL 

m 

= a 

(
K 

πwR 

2 

)1 / 3 

, 

ˆ P = 

P̄ H 

3 

Lm 

3 
= 

P 

πw 

and 

ˆ 
 = 


L 2 

m 

2 
= δ

(
K 

2 

π2 w 

2 R 

)1 / 3 

, (40)
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Â

P̂

(a)

−30 −20 −10 0 10
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

Δ̂
=

Δ
L

2
/
m

2

P̂ = P̄H3/Lm3

500

1

3

0

×102

(b)

Fig. 11. Adhesive contact of beam on flexible supports with the JKR approximation. Variation of (a) the contact area ˆ A and (b) the punch’s displacement ˆ 
 are plotted as a 

function of the total load ˆ P acting on the punch. The beam’s thickness h = 4 mm and l = 40 mm. The vertical translational spring’s stiffness k f s = ∞ . Various torsional springs 

are considered and their stiffnesses k f t are indicated next to their associated curves. The inset in (a) correspond to behavior at high ˆ A . Open and filled circles represent results 

for adhesive beams that are, respectively, simply supported and clamped. 
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Â = AL/m

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

Δ̂
=

Δ
L

2
/m

2

Hertz

JKR

(b)

Fig. 12. Comparison of non-adhesive contact with an adhesive contact employing JKR approximation for clamped beams. Variation of the punch’s displacement ˆ 
 with (a) 

the load ˆ P and (b) the contact area ˆ A are reported. We set h = 4 mm and l = 40 mm. Dashed lines are for adhesive and non-adhesive (blue color online) beams following, 

respectively, Sections 6 and 7 , while solid line represents results from Euler–Bernoulli (E-B) beam theory. Note that the contact area in E-B theory is zero. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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here H = h/R, instead of, respectively, A , P̄ , and 
, to report our

esults. This is done in order to facilitate contact with other work

n adhesion. We set the adhesion energy w = 0 . 02 × 10 −3 J / mm 

2 .

s in Section 6 , behavior of contact area with the punch’s displace-

ent is in Appendix D . 

Fig. 9 plots the variation of the contact area ˆ A and punch’s

isplacement ˆ 
 with the total load 

ˆ P acting on the punch for

lamped beams. While the slenderness ratio l/h = 10 , two differ-

nt combinations of l and h are considered. From Fig. 9 (a) we ob-
ˆ ˆ 
erve that the variation of A with P is sensitive to the choice of l 
nd h , notwithstanding the fact that l / h is kept constant; see also

ig. D.22 (a). This is in contrast to the case of non-adhesive con-

act of Section 6 , where results depended only on l / h . This behavior

s expected for adhesive beams as the right hand side of (39) de-

ends on L = l/R . However, from Fig. 9 (b) we observe that the vari-

tion of ˆ 
 with 

ˆ P is not sensitive to the choice of l and h , but only

o l / h . These aspects are further highlighted in Fig. 10 , which plots
ˆ 
 and 

ˆ 
 against ˆ P for clamped beams for different choices of l and

 . 
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Fig. 13. Adhesive contact of clamped beams with an adhesive zone model. Variation of (a) the contact area ˆ A and (b) the punch’s displacement ˆ 
 with the total load ˆ P . 

Different adhesive strengths λ are considered and these are indicated either next to their associated curves or in legend. The beam’s thickness h = 4 mm and l = 40 mm. 

Filled circles represent the JKR solution for the corresponding beam; cf. Section 7 . 
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In Figs. 9 and 10 , negative values of ˆ P and 

ˆ 
 reflect tensile loads

and upward displacement of the punch, respectively. We recall that
ˆ 
 equals the deflection of the center point on the beam’s top sur-

face, so that ˆ 
 < 0 indicates that the beam bends upwards. Neg-

ative values of ˆ P and 

ˆ 
 are due to the attractive adhesive forces.

Due to adhesion, the beam bends upwards and jumps into contact.

Equivalently, adhesive forces also act on the punch to pull it down,

so that we require a tensile force to hold the punch in its place.

This tensile force ˆ P is small for slender beams as they bend eas-

ily. For the same reason, this tensile force is smaller for a simply

supported beam compared to a clamped beam of the same thick-

ness; cf. Fig. 11 . Once contact is established, the tensile force is

slowly released and replaced by a compressive (downwards) force

in order to increase downward indentation. Again, for compressive

loads, thin beams bend more easily to wrap around the punch.

Thus, slender beams show greater contact area and displacement

at the same compressive load 

ˆ P . This explains the intersection of

the curves in Fig. 10 . Therefore, with increasing slenderness ratio,

the ˆ A – ˆ P and 

ˆ 
– ˆ P curves in Fig. 10 move towards (inwards) the

zero-load ( ̂  P = 0 ) vertical line. 

Next, for adhesive beams on flexible supports we plot the con-

tact area ˆ A and displacement ˆ 
 against the load 

ˆ P for various k 
f 
t in

Fig. 11 . Convergence to the results obtained for clamped and sim-

ply supported beams may be observed in Fig. 11 by varying k 
f 
t .

From our discussion in Section 6.2 , we know that the variation of

k 
f 
s does not affect how the contact area ˆ A varies with the load 

ˆ P . At

the same time, change in displacement ˆ 
 with 

ˆ P or ˆ A is affected

by variation in k 
f 
s only through the vertical displacement of the

translational springs supporting the beam at its ends. By removing

this global displacement ˆ 
l from 

ˆ 
 – as in Section 6.2 – the re-

sponse of ˆ 
 − ˆ 
l to ˆ P and 

ˆ A to ˆ 
 − ˆ 
l are found to be invariant

to k 
f 
s . 

Finally, in Fig. 12 (a), we plot the punch’s displacement ˆ 
 in

a clamped beam as a function of load 

ˆ P acting on the punch for

three different cases: an Euler–Bernoulli beam acted upon by a

point load at its midspan; an adhesionless beam modeled as in

Section 6 ; an adhesive beam modeled using JKR approximation

as above. We see that ˆ 
 − ˆ P curves for all cases are nearly lin-

A  
ar with similar slopes. Adhesion increases the displacement for

 given load, thereby shifting the ˆ 
 − ˆ P curves upward. Thus, the

ffective spring stiffness of indented beams closely matches the ef-

ective spring stiffness of an Euler–Bernoulli beams, irrespective of

dhesion. This, to some extent, is a reflection of the current ap-

roximate model that we employ, wherein the displacement of the

eam’s bottom surface is approximated through Euler–Bernoulli

eam theory. A more sophisticated analysis reveals that the ef-

ective spring stiffness of indented beams is non-linear and dif-

erent from Euler-Bernoulli beams ( Punati, 2017 ). It is important

o note that, although the ˆ 
 − ˆ P curves do not differ significantly,

he corresponding contact areas are very different, as is shown in

ig. 12 (b). This suggests that in experiments one must also mea-

ure contact areas in order to better estimate the effect of adhe-

ion. 

. Results: adhesive contact with an adhesive zone model 

We finally consider contact with an adhesive beam within the

ramework of adhesive zone models. As already mentioned, we will

ssume that an adhesive zone of length d = c − a extends outside

he contact zone; cf. Fig. 2 (b). Within the adhesive zone the in-

eraction is modeled through the Dugdale–Barenblatt model of (7) .

o obtain the contact pressure ϕ ( ̄x ) , the displacement 
 and the

ocation c of the adhesive zone’s edge, we have to solve (32) –(34) .

s in Sections 6 and 7 , behavior of contact area against the punch’s

isplacement is in Appendix D . 

For the clamped beam we plot in Fig. 13 the contact area Â

nd displacement ˆ 
 against the total load 

ˆ P for various adhesive

trengths λ. With increase in λ, the solutions approach the JKR so-

ution, and we see a close match at λ = 3 . On the other hand, as

→ 0, i.e. as adhesion reduces, solutions approach those obtained

or non-adhesive contact in Section 6 . From Fig. 13 (b) we observe

hat λ has limited effect on the ˆ 
– ˆ P plots. 

From previous discussions, it is expected that results for beams

ith flexible supports will lie between those obtained for clamped

nd simply supported beams. Hence, we do not explore this pa-

ameter space in great detail. We only consider the variation of
ˆ 
 and 

ˆ 
 with 

ˆ P for several values of torsional stiffness k 
f 

for
t 
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Fig. 14. Adhesive contact of beams on flexible supports with an adhesive zone model. Top row reports the variation of contact area ˆ A with total load ˆ P , while the bottom 

row plots the change of the punch’s displacement ˆ 
 with ˆ P . Different torsional spring stiffnesses k f t are considered, and they are noted next to their associated curves. Two 

different adhesive strengths λ are considered, as indicated. The beam’s thickness h = 4 mm and half-span l = 40 mm. The inset in (b) depict behavior at high ˆ A . Open and 

filled circles represent results for a simply supported and a clamped beam, respectively, at the corresponding λ. 
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 beam with h = 4 mm and l = 40 mm. Two different adhesive

trengths λ are investigated. The results are shown in Fig. 14 . The

ertical translational spring’s stiffness k 
f 
s is set to infinity. When

 

f 
t = 0 , the solutions match with those of a simply supported beam

ith the corresponding λ. With increase in k 
f 
t , the solution curves

ove towards those obtained for a clamped beam and will coin-

ide when k 
f 
t becomes infinity. It is seen in Fig. 14 that curves

or different k 
f 
t intersect with each other due to rotation permitted

t the supports by the torsional springs – greater the rotation al-

owed, higher the displacements, and lower the loads for the same

ontact area. This intersection point moves up with increasing λ,

s strong adhesive forces are able to bend the beam upwards more

asily. 

Finally, in Fig. 15 we plot the variation of the non-dimensional

dhesive zone size d̄ = c̄ − 1 with the contact area ˆ A for different

dhesive strengths λ and various k 
f 
t . We observe that the adhe-

ive zone size is large for smaller λ, and decreases with increasing

, finally vanishing as λ→ ∞ . Moreover, we find that the adhesive

one’s size does not vary much with the spring stiffness k 
f 
t . Sim-

larly the slenderness ratio l / h and the spring stiffness k 
f 
s do not

ffect d̄ in any significant manner. 
a  
. Experiments and applications 

In this final section, we compare our predictions with prelim-

nary experimental results on a clamped beam, as well as apply

ur methods to model structural adhesives of the type shown in

ig. 1 (a). 

.1. Experiments 

Poly-dimethyl-siloxane (PDMS) is used to prepare the beam

amples. The experimental set-up used is shown in Fig. 16 (a). We

ollowed ( Chaudhury et al., 1996 ) to find the Young’s modulus E

nd the work of adhesion w for our PDMS by indenting a thick

 h = 25 mm) sample and fitting the experimental results with the

KR theory for an elastic half-space. Fig. 16 (b) plots the experimen-

al data and fitted JKR theory. We estimate E to be in the range of

 − 2 MPa and w ≈ 27 mJ/mm 

2 . The radius of the punch used in all

xperiments was R = 27 . 5 mm. 

We then performed indentation experiments on an adhesive

lamped beam and the results are also reported in Fig. 16 (b). The

eam’s half-span l ≈ 50 mm and thickness h = 8 mm. Fig. 16 (b)

lso plots predictions of the theory developed here. For simplic-
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Fig. 15. Adhesive contact of beams on flexible supports with an adhesive zone model. Variation of the adhesive zone’s size d̄ with the contact area ˆ A for (a) different 

adhesive strengths λ, with k f t = ∞ and k f s = ∞ , and (b) three different torsional spring stiffnesses k f t at λ = 0 . 5 . 
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Fig. 16. (a) Indentation experiments for an adhesive clamped beam of thickness h = 8 mm and half-span l = 50 mm. Insets show a closeup of the side view of the indentation 

and a top view of the contact patch. (b) Variation of the contact area a (in mm) with the total load P (in g). Filled circles represent experimental data. Solid lines correspond 

to theoretical predictions employing JKR approximation, while the dashed line is for non-adhesive contact. For h = 8 mm, we followed Sections 6 and 7 , while we employed 

the standard JKR solution for a half-space when h = 25 mm. 
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ity we restrict ourselves to the JKR approximation of Section 7 .

We observe from Fig. 16 (b) that our theoretical predictions match

well with experiments on clamped adhesive beam. From Fig. 16 (b)

we note that there is significant difference in the contact areas

measured during indentation of the beam and for the half-space.

Fig. 16 (b) also highlights the role of adhesion, as the response for

adhesionless contact does not match experiments. These observa-

tions underline the importance of modeling the adhesive contact of

beams carefully, and in a manner distinct from how we approach

indentation of half-spaces. 
r  
.2. Application 

Finally, we demonstrate the utility of our semi-analytical proce-

ure to model indentation in structural adhesives with one micro-

hannel, as shown in Fig. 17 (a). To generate theoretical predic-

ions, we employ the material and geometric parameters shown in

able 1 . The stiffnesses of the flexible end supports are estimated

rom a strength-of-materials approach to be k 
f 
s ≈ 12 b 

′ 
l 3 /h c h 

3 and

 

f 
t ≈ l b 

′ 3 
/h c h 

3 , where b 
′ 

is the width of the end supports. Our

esults are then compared with the experimental results of
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Fig. 17. (a) A structural adhesive with one micro-channel. (b) Variation of the the punch’s displacement δ with total load P . The open circles represent the solution for 

non-adhesive contact obtained from the procedure of Section 6 . The solid line represents the solution for adhesive contact obtained from Section 7 . Asterisk ( ∗) are the 

experimental results of Arul and Ghatak (2008) . 

Table 1 

Geometrical and material parameters considered for modeling adhesives with 

one micro-channel; see also Fig. 17 (a). These values are taken from Arul and 

Ghatak (2008) . 

Geometrical and material parameters Value 

Beam thickness h = 0 . 8 mm 

Micro-channel’s thickness h c = 0 . 1 mm 

Beam’s length 2 l = 5 − 8 mm 

Punch radius R = 2 . 24 mm 

Punch length l p = 2 . 7 mm 

Shear modulus G = 1 MPa 

Poission’s ratio ν = 0 . 49 

Young’s modulus E = 2 ( 1 + ν) ≈ 3 MPa 

Work of adhesion w = 0 . 045 × 10 −3 mJ/mm 

2 or N/mm 
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rul and Ghatak (2008) in Fig. 17 (b). We find good agreement upto

n indentation depth δ ≈ 0.1 mm, i.e. until the point S 23 . At S 23 , the

urfaces S 2 and S 3 in Fig. 17 (a) begins to interact. Currently, we

ave not consider the interaction between two layers in our math-

matical model. Thus, we expect this deviation of our predictions

rom experiments. 

In Fig. 17 (b) we reconsider the δ − P response in the absence of

dhesion. Because Arul and Ghatak (2008) did not report measure-

ents of contact area, we assume that the contact area observed

s the same as that estimated by the adhesive beam model of the

revious paragraph. We note from Fig. 17 that the predictions for

dhesionless contact do not match experiments. The slopes, how-

ver, do match, as indeed they should be given by Fig. 12 (a). This

gain suggests that experiments should report contact area mea-

urements in addition to total load and displacement. 

0. Conclusions 

In this article we presented an approximate theoretical model

or the indentation of adhesive beams mounted on flexible sup-

orts. Adhesion, when present, was incorporated through either

he JKR approximation or an adhesive zone model. To simplify

nd close our mathematical model, we approximated the displace-

ent of the bottom surface of the beam through Euler–Benoulli
eam theory. This was then utilized to formulate a boundary value

roblem, which is reduced to a single Fredholm integral equation

f the first kind for the unknown contact pressure. The integral

quation was then solved through a Galerkin projection employing

hebyshev polynomials. Finite element (FE) simulations were car-

ied out for clamped and simply supported non-adhesive beams,

nd our results compared well with FE predictions, as well as with

reviously reported theoretical results. Results for adhesive con-

act were found for several combinations of adhesive strengths,

eam geometries, and support flexibilities characterized through

orsional and vertical translational springs. Theoretical results for

dhesive clamped beam were compared with preliminary experi-

ents and a satisfactory match was observed. Finally, we demon-

trated the application of our approach to model a complex struc-

ural adhesive. 

The semi-analytic technique presented here assumes that the

isplacement v b of the beam’s bottom surface is approximated well

y Euler–Bernoulli beam theory. This assumption is seen to hold

or contact areas less than or equal to the beam’s thickness, i.e.

 / h � 1. For deeper indentations, we need to formulate the con-

act problem in terms of two unknowns, viz. the contact pres-

ure p ( x ) and the displacement v b ( x ), and then solve the ensuing

ual integral equations ( Punati, 2017 ). Investigating adhesive con-

act of beams experimentally is also useful, and this we are cur-

ently pursuing. Looking further forward, we envisage extending

ur approximate analysis technique to modeling adhesive interac-

ion of one beam with another, as is observed in multi-layered

tructural adhesives shown in Fig. 1 . The present framework may

lso be adapted to three-dimensional axi-symmetric adhesive con-

act of punches with plates. 
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Appendix A. Calculations using beam theory 

In this section, we find the displacement of an Euler–Bernouli

beam subjected to a point load at its center and resting on flexible

supports, as shown in Fig. A.18 . 

From Euler-Bernoulli beam theory ( Crandall et al., 2008 , p. 165,

523, 543) we find 

EI 
d 

4 v n ( x ) 
d x 4 

= P 〈 x 〉 −1 , (A.1)

where v n ( x ) is the displacement of the neutral axis (dash-dot line

in Fig. A.18 ) and 

〈 x 〉 = 

{
x, x > 0 

0 , x ≤ 0 . 

The appropriate boundary conditions are: 

v n | x = −l = 

P 

2 k s 
, v n | x = l = 

P 

2 k s 
, (A.2a)

k t 
d v n 
d x 

∣∣∣∣
x = −l 

= EI 
d 

2 v n 
d x 2 

∣∣∣∣
x = −l 

and −k t 
d v n 
d x 

∣∣∣∣
x = l 

= EI 
d 

2 v n 
d x 2 

∣∣∣∣
x = l 

. 

(A.2b)

Identifying the displacement v b of the beam’s bottom surface

with v n , as is done in beam theory, and solving (A.1) and (A.2),

provides 

v b ( x ) = 

P 

EI 

{
1 

6 

〈 x 〉 3 − 1 

12 

x 3 − x 2 l 

8 

(
1 + 

EI 

k t l + EI 

)
+ 

1 

24 

(
l 3 + 3 l 3 

EI 

k t l + EI 
+ 12 

EI 

k s 

)} 

. (A.3)

As the displacement is symmetric in x , we henceforth employ v b ( x )

for x ≥ 0 in our calculations. 
Non-dimensionalizing (A.3) following Section 3 , we obtain 

ϑ b 

(
ˆ τ
)

= 

4 ̄P 

3 ̄I 
(
1 − ν2 

)
×

{ 〈 ̂  τ 〉 3 
6 

− ˆ τ 3 

12 
− ˆ τ 2 

8 

(
1 + K 

−1 
t 

)
+ 

1 

24 

(
1 + 3 K 

−1 
t + 12 K 

−1 
s 

)}
, 

(A.4)

where K 

−1 
t = EI / ( k t l + EI ) = (1 + k 

f 
t ) 

−1 and K 

−1 
s = EI / k s l 

3 = k 
f 
s 

−1 
. 

When we extended the beam to infinity – cf. Fig. 2 (b) – the

displacement of the overhang, i.e. ˆ τ > 1 , is given by 

ϑ b 

(
ˆ τ
)

= ϑ b 

(
ˆ τ
)∣∣

ˆ τ=1 
+ 

d ϑ b 

(
ˆ τ
)

d ̂  τ

∣∣∣∣∣
ˆ τ=1 

(
ˆ τ − 1 

)
. (A.5)

Calculating the displacement and slope at ˆ τ = 1 from (A.4) and

substituting in (A.5) yields 
kt

ksks

kt

x
P

l
y

h

l

Fig. A.18. An Euler–Bernoulli beam on flexible supports acted upon at its center by 

a concentrated force P . 

E  

(

ϑ  

w

ϑ  

S  

b  

i

 b 

(
ˆ τ
)

= 

4 ̄P 

3 ̄I 
(
1 − ν2 

) [ 
1 

2 K s 
− 1 

4 K t 

(
ˆ τ − 1 

)] 
, ˆ τ > 1 . (A.6)

inally, the displacement of the extended beam’s bottom surface

ver its entire length may be written as 

 b 

(
ˆ τ
)

= 

4 ̄P 

3 ̄I 
(
1 − ν2 

) ϑ p 

(
ˆ τ
)
, (A.7)

here 

 p 

(
ˆ τ
)

= 

⎧ ⎨ 

⎩ 

{
ˆ τ 3 / 12 − ˆ τ 2 

(
1 + K 

−1 
t 

)
/ 8 + 

(
1 + 3 K 

−1 
t + 12 K 

−1 
s 

)
/ 24 

}
, 

0 ≤ ˆ τ ≤ 1 {
K 

−1 
s / 2 − K 

−1 
t 

(
ˆ τ − 1 

)
/ 4 

}
, ˆ τ > 1 . 

(A.8)

Finally, we evaluate the Fourier transform 

ˆ 
 b 

(
ˆ ω 

)
= 

∫ ∞ 

−∞ 

ϑ b 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ = 2 

∫ ∞ 

0 

ϑ b 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ , 

(A.9)

hich is required in (23) . The above integrals are typically unde-

ned, as ϑ 

(
ˆ τ
)

is unbounded once the beam is extended to infin-

ty, unless the beam is clamped. To overcome this, we invoke St.

enant’s principle by which, displacement of the overhang, suffi-

iently far away from the supports, may be modified without ex-

rting any significant influence on the displacement and stresses

n the portion of the beam lying within the supports. To this end,

e modify the displacement of the beam’s bottom surface by in-

roducing 

 

M 

b 

(
ˆ τ
)

= ϑ b 

(
ˆ τ
)

· W 

(
ˆ τ
)
, (A.10)

ith 

 

(
ˆ τ
)

= 

⎧ ⎨ 

⎩ 

1 , for ˆ τ ≤ ˆ l 1 , 

w 2 

(
ˆ τ
)
, for ˆ l 1 < ˆ τ < 

ˆ l 2 

0 , for ˆ τ ≥ ˆ l 2 

, (A.11)

here 

 2 

(
ˆ τ
)

= 

exp 

{
−1 / 

(
ˆ l 2 − ˆ τ

)2 
}

exp 

{
−1 / 

(
ˆ l 2 − ˆ τ

)2 
}

+ exp 

{
−1 / 

(
ˆ τ − ˆ l 1 

)2 
} , (A.12)

nd 

ˆ l 1 and 

ˆ l 2 locate points on the beam that are far away from

ts supports, i.e. ˆ l 2 > ̂

 l 1 >> 1 . The function W 

(
ˆ τ
)

is a mollifier , see

uthukumar (2016) , and is infinitely differentiable everywhere. 

The mollified displacement ϑ 

M 

b 

(
ˆ τ
)

in (A.10) is now utilized in

A.9) to compute the Fourier transforms. Thus, 

ˆ 
 b 

(
ˆ ω 

)
≈ 2 

∫ ∞ 

0 

ϑ 

M 

b 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ

= 2 

∫ ∞ 

0 

ϑ b 

(
ˆ τ
)
W 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ . (A.13)

valuating the above integral and replacing the total load P̄ from

28) in the resulting equation provides 

ˆ 
 b 

(
ˆ ω 

)
= 

{ 

4 πb 0 

3 ̄I 
(
1 − ν2 

) − 4 λAm ̄c 

3 ̂  γ 3 Ī L 
(
1 − ν2 

)
} 

ˆ ϑ p 

(
ˆ ω 

)
, (A.14)

here 

ˆ 
 p 

(
ˆ ω 

)
= 2 

∫ ∞ 

0 

ϑ p 

(
ˆ τ
)
W 

(
ˆ τ
)

cos 
(

ˆ ω ̂  τ
)

d ̂  τ . (A.15)

etting k 
f 
t → ∞ and k 

f 
s → ∞ , we obtain results for a clamped

eam, while those for a simply supported beam are found by tak-

ng k 
f → 0 and k 

f 
s → ∞ . 
t 
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Fig. D.19. Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) beams. 

Variation of the contact area A with the punch’s displacement 
 is plotted. The 

beam’s slenderness ratio l / h = 10. Solid lines are results obtained from the semi- 

analytical procedure of Section 4 . Filled circles correspond to FE simulations of 

Section 5 . 
Finally, we write 

1 

π ˆ γ
ˆ ϑ b 

(
ˆ ω 

)
= 

{ 

4 b 0 

3 ̄I 
(
1 − ν2 

)
ˆ γ

− 4 λAm ̄c 

3 π ˆ γ 4 Ī L 
(
1 − ν2 

)
} 

ˆ ϑ p 

(
ˆ ω 

)
. (A.16) 

ppendix B. Vertical displacement of the beam’s top surface in 

ourier space V ( ξ, 0) 

In Fourier space, the transformed horizontal and vertical dis-

lacements may be solved as, respectively, 

 ( ξ , y ) = { κa 1 + ξy ( a 1 + ia 3 ) } e ξy + { κb 1 − ξy ( b 1 − ib 3 ) } e −ξy , 

(B.1) 

nd V ( ξ , y ) = { κa 3 + iξy ( a 1 + ia 3 ) } e ξy + { κb 3 + iξy ( b 1 − ib 3 ) } e −ξy , 

(B.2) 

ith 

 ( ξ , y ) = 

∫ ∞ 

−∞ 

u ( x, y ) e iξx d x and V ( ξ , y ) = 

∫ ∞ 

−∞ 

v ( x, y ) e iξx d x, 

here a 1 , a 3 , b 1 and b 3 are unknown constants. These con-

tants are obtained by satisfying boundary conditions (2), which

n Fourier space are 

t y = 0 : S ξy = 0 , S yy = P̄ c (ξ ) , (B.3a) 

nd at y = h : S ξy = 0 , V = v̄ b (ξ ) , (B.3b) 

ith 

S ξy = 

E 

2 ( 1 + ν) 

(
d 

d y 
U − iξV 

)
, 

S yy = 

E 

( 1 + ν) 

{
d 

d y 
V + 

ν

1 − 2 ν

(
−iξU + 

d 

d y 
V 

)}
, 

 ̄c (ξ ) = 

∫ ∞ 

−∞ 

−P c ( x ) e 
iξx d x and v̄ b (ξ ) = 

∫ ∞ 

−∞ 

v b ( x ) e iξx d x. 

olving (B.1) –(B.3), we obtain the vertical displacement of the

eam’s top surface in Fourier space as 

 ( ξ , 0 ) = −2 P̄ c ( ξ ) 

E ∗
sinh 

2 ξ h 

ξ ( ξ h + sinh ξ h cosh ξ h ) 

+ v̄ b ( ξ ) 
sinh ξ h + ξ h cosh ξ h 

ξ h + sinh ξ h cosh ξ h 

. 

ppendix C. Evaluation of the integrals αn ( ̄ω ) 

We recall from (27) in Section 4 that 

n ( ̄ω ) = 

∫ 1 

−1 

1 √ (
1 − τ̄ 2 

)T n ( ̄τ ) cos ( ̄ω τ ) d ̄τ . (C.1) 

e now compute these integrals explicitly. First, consider odd n .

or this, the integrand is an odd function so that 
2 n −1 ( ̄ω ) = 0 . (C.2) 

ext, evaluating (C.1) for even n we obtain the first few αn as 

α0 ( ̄ω ) = π J ( 0 , ω̄ ) , 

α2 ( ̄ω ) = π J ( 0 , ω̄ ) − 2 π J ( 1 , ω̄ ) 

ω̄ 

, 

α4 ( ̄ω ) = π J ( 0 , ω̄ ) − 8 π J ( 1 , ω̄ ) 

ω̄ 

− 24 π J ( 0 , ω̄ ) 

ω̄ 

2 

+ 

48 π J ( 1 , ω̄ ) 

ω̄ 

3 
, 

nd α6 ( ̄ω ) = π J ( 0 , ω̄ ) − 18 π J ( 1 , ω̄ ) 

ω̄ 

− 144 π J ( 0 , ω̄ ) 

ω̄ 

2 

+ 

768 π J ( 1 , ω̄ ) 

ω̄ 

3 

+ 

1920 π J ( 0 , ω̄ ) 

ω̄ 

4 
− 3840 π J ( 1 , ω̄ ) 

ω̄ 

5 
, (C.3) 

here J ( n, ω̄ ) are the Bessel’s functions of the first kind of order n .

mploying the recurrence relation ( Polyanin and Manzhirov, 2008 ,

. 1016), 

 ( n + 1 , ω̄ ) = 

2 n 

ω̄ 

J ( n, ω̄ ) − J ( n − 1 , ω̄ ) , 

e rewrite (C.3) as 

2 ( ̄ω ) = −π J ( 2 , ω̄ ) , α4 ( ̄ω ) = π J ( 4 , ω̄ ) 

nd α6 ( ̄ω ) = −π J ( 6 , ω̄ ) . 

n general, it is possible to show that 

2 n ( ̄ω ) = ( −1 ) 
n π J ( 2 n, ω̄ ) . (C.4) 

ppendix D. Additional results 
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Fig. D.20. Non-adhesive contact of clamped beams. Variation of (a) the contact area ˆ A and (b) the punch’s displacement ˆ 
 with total load ˆ P are shown. Different slenderness 

ratios l / h are considered and these are noted next to their associated curves. 
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Fig. D.21. Non adhesive contact of beams on flexible supports. The beam’s slenderness ratio l/h = 10 . (a) Variation of contact area A is plotted as a function of the punch’s 

displacement 
. The vertical translational spring’s stiffness k f s = ∞ . Various torsional springs are considered and their stiffnesses k f t are indicated next to their associated 

curves. Open and filled circles represent results for simply supported and a clamped beams, respectively. (b) Variation of contact area A is plotted as a function of the 

adjusted punch’s displacement 
 − 
l by varying k f s . The inset shows the variation of contact area A with the punch’s displacement 
. The torsional spring stiffness k f t = ∞ . 

Various vertical translational springs are considered and their stiffnesses k f s are indicated either in the legend or next to their associated curves. Filled circles in the inset 

represent results for a clamped beam. 
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Fig. D.22. Adhesive contact of beams with the JKR approximation. The variation of contact area ˆ A with the punch’s displacement ˆ 
 is reported. (a) Two clamped beams 

are considered with the same slenderness ratio of l/h = 10 . Solid line correspond to l = 40 mm and h = 4 mm, while the open circles are for a beam with l = 80 mm and 

h = 8 mm. (b) Clamped beams with different slenderness ratio l / h , as shown, are considered. Results are obtained by setting l = 40 mm and varying h . (c) Results for clamped 

beams with different l / h are plotted by setting h = 4 mm but different l . In (b) and (c) with increasing l / h the curves move away (outward) from 

ˆ 
 = 0 line. (d) A beam 

with thickness h = 4 mm and l = 40 mm, which is resting on flexible supports, is considered. The vertical translational spring’s stiffness k f s = ∞ . Various torsional springs 

are considered and their stiffnesses k f t are indicated next to their associated curves. The inset correspond to behavior at high ˆ A . Open and filled circles represent results for 

adhesive beams that are, respectively, simply supported and clamped. 
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Fig. D.23. Adhesive contact of beams with an adhesive zone model. Variation of the contact area ˆ A with the punch’s displacement ˆ 
 is reported. (a) A clamped beam with 

thickness h = 4 mm and l = 40 mm is considered. Results are plotted for different adhesive strengths λ as indicated next to their associated curves. Filled circles represent 

the JKR solution for the corresponding beam; cf. Section 7 . (b,c) A beam resting on flexible supports is considered. Beam’s thickness h = 4 mm and l = 40 mm. The vertical 

translational spring’s stiffness k f s = ∞ . Results are plotted for different torsional spring stiffnesses k f t as noted next to their associated curves. Two different adhesive strengths 

λ are considered, as indicated. The inset in (c) depict behavior at high ˆ A . Open and filled circles represent results for a simply supported and a clamped beam, respectively, 
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