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Abstract

We study indentation by a rigid cylindrical punch of finite, free-standing, adhesive elastic layers that are supported only

at their ends. The adhesion is considered through an adhesive-zone model. Formulating the boundary-value problem, we

obtain two coupled Fredholm integral equations of the first kind, which are solved by a collocation method. Results for

non-adhesive contact are obtained when adhesion is zero, and they match well with our own finite element computations

and earlier approximate analyses. Additionally, we obtain new results for deeper indentation of non-adhesive contact.

In the limit of very adhesive and/or very soft solids, we formulate an approximate model similar to the well-known

Johnson–Kendall–Roberts (JKR) model for half-spaces. Our results for adhesive contact match well with preliminary

indentation experiments on adhesive layers. Finally, we demonstrate the utility of our approach in modelling structural

adhesives through a specific example.
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1. Introduction

Hertz, in 1882, proposed a theory for the contact of non-adhesive elastic spheres, which is easily modified to
address the indentation of three-dimensional elastic half-spaces by rigid, axisymmetric punches. Later, John-
son et al. [1], Derjaguin [2] and Derjaguin et al. [3] proposed conficting theories for adhesive axisymmetric
indention; these are known as, respectively, JKR and DMT approximations. Finally, Maugis [4] employed an
adhesive-zone model to demonstrate that both JKR and DMT approximations may be obtained as the two limits
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Figure 1. (a) Indentation by a rigid cylindrical punch of a finite, free-standing, adhesive, simply supported elastic layer. (b) Mathematical

model for the system in (a) obtained by extending the elastic layer to infinity along its slope near the ends. The inset shows the

adhesive-zone model employed in our mathematical formulation.

of a general theory when the strength of the adhesion relative to the stiffness of the elastic substrate grows to
infinity or reduces to zero. These theories and their two-dimensional versions are discussed in the literature
[5–10].

In recent years, indentation of thin adhesive structures has attracted the attention of researchers because
of their applications in the electronics and computer industries, and in biological tissues. At the same time,
adhesive layers themselves find applications in other devices/areas: in electronic devices like micro-/nano-
electromechanical devices [11, 12]; in the characterization of adhesion of graphene membranes [13–15]; to
model de-lamination of elastic layers [16] and the formation of blisters in them [17]; and to understand adhesion
mechanisms in geckos [18], which are studied for proper design of grip-and-release adhesives [19]. Modelling
and characterization of adhesive layers thus continues to attract great interest [20–22].

The myriad applications above motivates the present investigation into the general problem of the indentation
of free-standing, adhesive, elastic layers of finite length that are supported only at their two ends, as shown in
Figure 1(a). This, as we will show, constitutes a first step towards the modelling of a variety of structural
adhesives.

Previous related studies have considered, at most, indentation of non-adhesive beams [23, 24]. These
employed, respectively, integral transforms and Fourier series. Recently, Kim et al. [25] revisited the inden-
tation of non-adhesive beams through approximate techniques. However, extending the methods of these papers
to an exact analysis of adhesive elastic layers is difficult, as they involve several iterated integral transforms and
asymptotic matching with beam theories. In contrast, we address non-adhesive and adhesive contact of elastic
layers in an exact manner within the same framework.

For brevity of presentation, we will restrict ourselves to clamped and simply supported adhesive elastic lay-
ers. We have shown elsewhere in the context of contact of elastic beams [26] that these two boundary conditions
bound the range of behaviours displayed by layers held between flexible end supports.

Adhesion is modelled through an adhesive-zone model following Maugis [4], which is described in the inset
of Figure 1(b).

This paper is organized as follows. We first present the mathematical model, which leads to a set of dual-
integral equations in terms of two unknowns: the contact pressure and the vertical displacement of the layer’s
bottom surface. The integral equations are then solved by a collocation technique. We then briefly discuss the
finite element (FE) computations that are compared with our results for non-adhesive indentation. Next, we
present results for the indentation of clamped and simply supported adhesive and non-adhesive elastic layers.
Finally, we compare our predictions with preliminary experiments on adhesive layers and also demonstrate the
utility of our approach in modelling real structural adhesives.

2. Mathematical model

We wish to investigate indentation of free-standing finite layers of the type shown in Figure 1(a). The length of
the layer is 2l. It is found cumbersome mathematically to work with layers of finite extent. We, therefore, replace
(mathematically) the finite layer by an infinite layer by extending the layer of Figure 1(a) beyond the supports to
infinity, as shown in Figure 1(b). This extension is done in a manner consistent with the kinematic and kinetic
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constraints imposed by the supports. Thus, finite layers are extended linearly along their slope at the supports,
thereby maintaining continuity of displacement and slope. The extended linear elastic layer of infinite length in
Figure 1(b) has thickness h, Young’s modulus E and Poisson’s ratio ν, and is supported at only two points that
are 2l apart. The layer’s top and bottom surfaces are taken to be frictionless.

The layers are indented by a rigid, cylindrical punch of radius R subjected to a load P. The punch subse-
quently moves down by δ and makes contact with the layer over a length 2a. The applied load P exerts the
traction Pc(x) on the layer, which includes both the interaction pressure p(x) in contact area |x| ≤ a and the
traction σ0 in the adhesive zone a ≤ |x| ≤ c. During indentation, the vertical displacement of the layer’s bottom
surface is vb(x). The work of adhesion between the punch and the adhesive layer is w.

We first set χ = x/l and γ = h/l. We rescale x, y, c, l and h by the contact area a, but do not rename them,
so that the contact patch now lies within x = −1 and x = 1. We then introduce the following non-dimensional
parameters:

{8c (x) , ϕ (x)} = a

πw
{Pc (x) , p (x)} ; P̄ = P

πw
;

1 = δ

(

K2

π2w2R

)1/3

; λ = 2σ0

(

R

πwK2

)1/3

;

A = a

(

K

πwR2

)1/3

; m =
(πw

RK

)1/3

, (1)

where K = 4 E/3(1 − ν2) . The air-gap between the punch and the layer and the vertical displacements of the
layer’s top and bottom surface will be scaled as δ. The normal traction σyy(x, h) on the bottom surface (y = h) of
the layer is scaled by (8γ /3KL). In the subsequent development, x and χ locate material points on, respectively,
the layer’s top and bottom surface.

To resolve the contact problem, we need to solve for two unknowns: the interaction pressure ϕ(x) and
the bottom surface’s vertical displacement vb(χ ). These are obtained as the solution to the coupled integral
equations:
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where the overbar indicates the Fourier transform of the function, the curvature κb = d2vb/dχ2, ω = ξh, and
the kernels
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We provide below a summary of the steps leading to equations (2) and (3), and details are available in Appendix
A:

1. We first Fourier transform [27] the plane-strain, two-dimensional elasticity equations governing Figure
1(b). This yields the vertical displacement v (x, y = 0) of the layer’s top surface in terms of integrals over
the top and bottom surfaces of, respectively, the traction 8c(x) on the top surface and the displacement
vb(χ ) of the bottom surface. A similar equation is found for the normal traction σyy (x, h) on the layer’s
bottom surface. These two equations are of the form (2) and (3), respectively. They are now simplified
using conditions of contact.

2. The traction 8c(x) and displacement vb(χ ) are not known for all x and χ . Instead, displacement and
traction are prescribed in some regions of the top and bottom surfaces, respectively. The punch’s profile
dictates the vertical displacement of the top surface in the contact zone, and the bottom surface is free of
traction between χ = −1 and χ = 1. Thus,

v(x, 0) = 1 − 1

2
x2A2 for − 1 ≤ x ≤ 1, (5)

and σyy (χ , h) = 0 for − 1 < χ < 1, (6)

where 1 is the punch’s displacement, and we have assumed δ � R. The above equations lead to the
left-hand sides of equations (2) and (3).

3. The adhesive interaction between the punch and the layer is assumed to follow the Dugdale–Barenblatt
adhesive-zone model [4]. In this model, a constant normal traction σ0 acts per unit length within the
adhesive zone. The adhesive zone is of length d = c − 1, where c demarcates the zone’s outer edge; see
the inset in Figure 1(b). With this, we write the non-dimensional normal traction on the top surface as

8c (x) =
{

ϕ (x) for |x| ≤ 1,
−λA/2m for 1 ≤ |x| ≤ c,
0 for |x| > c.

(7)

When introduced into the Fourier-transformed equations of step (1), the above leads to the right-hand sides
of equations (2) and (3). We note that the total load on the punch is found by integrating equation (7) from
−c to c:

P̄ =
1
∫

−1

ϕ (x) dx − λA

m
(c − 1) . (8)

We still require additional conditions to complete the adhesive-zone description of step (3) above. These are
now derived.

An adhesive zone introduces the extra variable c into the contact problem. The required additional equation
is obtained by equating the energy release rate G – computed employing the J -integral [28] – to the work of
adhesion w, to yield the energy balance1

πλ

2
δc = 1, (9)
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where

δc = 1

2
c2A2 − 1 + vc (10)

is the air-gap at the end of the adhesive zone, and vc = v (c, 0) is the vertical displacement of the top surface at
x = c; see inset in Figure 1(b). We obtain vc by evaluating the right-hand side of equation (2) at x = c. Next,
the adhesive-zone model is introduced to resolve stress singularities at the contact edges (x = ±1). Thus, we
impose continuity of the normal traction at x = ±1, that is:

lim
x→±1∓

ϕ (x) = −λA

2m
. (11)

The governing equations (2) and (3) are coupled Fredholm integral equations of the first kind [29] that are to
be solved along with conditions (9)–(11). This cannot be done analytically due to the complex kernels (4). We
will, therefore, implement a numerical solution in the next section. But, first we make two remarks relevant to
adhesion-free contact and to a JKR-like approximation that is useful for highly adhesive, soft layers:

1. In non-adhesive indentation λ = 0 = w, and equation (9) is automatically satisfied.
2. When the JKR approximation is invoked, adhesive stresses dominate the material’s stiffness, so that

λ→∞. Thus, the adhesive zone is assumed to vanish, that is c→1. Then, employing Griffith’s criterion2

[30], the energy balance (9) becomes

2πm2K2
1

3A
= 1, (12)

where

K1 = − lim
x→1−

√

2π (1 − x)ϕ (x) (13)

is a stress intensity factor. The continuity condition (11) is now redundant.

2.1. Numerical solution

We approximate the contact pressure ϕ(x) and the displacement vb (χ ) of the layer’s bottom surface as,
respectively,

ϕ (x) = −λA

2m
+ 1
√

(1 − x2)

N
∑

n=0

b2nT2n (x) for − 1 ≤ x ≤ 1, (14)

and vb (χ ) = d0 +
M
∑

n=1

dn Sn (χ ) for − 1 ≤ χ ≤ 1, (15)

where T2n (x) are Chebyshev polynomials of the first kind, Sn (χ ) = cos (nπχ ) for a clamped layer and
sin {(2n − 1) π (χ + 1) /2} for a simply supported layer – these are chosen to satisfy end conditions (see
Appendix B) – and b2n and dn are constants that are to be determined. Only even Chebyshev polynomials
are considered as the indentation is symmetric. The constant term in equation (14) explicitly accounts for the
contact pressure at the contact edge in the adhesive-zone model; see equation (11). The curvature κb of the layer

is obtained as d2vb/dχ2. Substituting equation (14) in (2) and inserting equation (15) into (3) leads to N + 1
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and M algebraic equations, respectively,

1 − 1
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where xi and χk are collocation points, and J t and Qt
n are functions derived from the kernels (4) through

projection integrals; the details are given in Appendix C.
Employing the series approximation (equations (14) and (15)) in the constraints (9)–(11) provides

πλ

2

(

1

2
c2 A2 − 1 + vc

)

= 1 (18)

and b0 + b2 + · · · + b2N = 0. (19)

In the JKR approximation, equation (11) replaces (12), so that utilizing equation (14) leads to

b0 + b2 + · · · + b2N = −
√

6A

2πm
, (20)

which then takes the place of equation (19). Utilizing equation (14) in (8) yields the total load acting on the
punch as

P̄ = πb0 − λAc

m
. (21)

Discretizing equations (2) and (3) led to the N + M + 1 algebraic equations (16) and (17). Along with the
discretized constraints (18) and (19), we finally obtain the N + M + 3 equations required to solve for the N + 1
unknowns b2n, the M unknowns dn, 1 and c. We note that the constant d0 in equation (15) is found by satisfying
kinematic conditions at the supports χ = ±1. This system of nonlinear algebraic equations is solved for any
given contact area A following the algorithm in Appendix C. The results obtained are discussed next.

3. Results

3.1. Non-adhesive contact

We first consider the non-adhesive indentation of clamped and simply supported layers. In the absence of adhe-
sion, we set λ = 0 in equations (2) and (3). The corresponding discretized forms follow from equations (16)
and (17), respectively:

1 − 1

2
x2

i A2 = 8γ 3

3π

N
∑
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t

2n (xi) + 1

πγ

M
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and 0 = 8γ 3

3π

N
∑
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b

2n (χk) + γ

π

M
∑

n=1

dnQ
b
n (χk) . (23)

Non-adhesive contacting surfaces detach smoothly, so that the pressure vanishes at the contact edge, and equa-
tion (18) holds. We solve equations (22), (23) and (18) through the numerical algorithm of Appendix C. We set
N = 5 and M = 50 in our computations.
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Figure 2. Non-adhesive contact of (a) clamped and (b) simply supported layers. We plot the non-dimensional contact pressures

ϕ (x) at several A as noted next to their corresponding curves. We set h = 4 mm and l = 40 mm.

We present below some new results for the indentation of adhesionless layers. Appendix D compares our
results with our FE computations and with approximate theories [23, 24]. In each case, excellent match is found,
which validates our approach and helps build confidence in its application to adhesive layers later.

We set Young’s modulus, Poisson’s ratio and adhesion energy to E = 0.083 MPa, ν = 0.4 and w = 0.02 ×
10−3 J/mm2, respectively, as representative of typical soft adhesives. In the case of non-adhesive contact w
serves only to facilitate non-dimensionalization. Other geometric parameters are: l = 40 mm, R = 225 mm and
h = 4 mm.

We plot the contact pressure ϕ (x) for several contact areas A in Figure 2. We observe that when A is small, ϕ
is maximum at the centre of the contact patch. With increasing A, the pressure profiles become double-humped
and ϕ reaches its maximum near the contact edges. For A = 3.84 (3.85), ϕ at the centre of the contact patch
becomes zero for clamped (simply supported) layers. Increasing the contact area further leads to negative (ten-
sile) pressure at the centre of the contact patch, reflecting loss of contact between the punch and the adhesionless
elastic layer. Our formulation has not yet been extended to discontinuous contact areas, so we do not investigate
larger A.

We plot the variation of the contact area A with total load P̄ acting on the punch and with the punch’s
displacement 1 at several slenderness ratios l/h in Figure 3. Both clamped and simply supported layers are
considered, whose results are found to be qualitatively similar. With increasing l/h the layer’s resistance to
bending decreases and, hence, we find smaller loads P̄, or larger deflections 1, at the same contact area A. For
the same reason the load P̄ required to achieve the same A in simply supported layers is smaller than for clamped
layers. At the same time, the displacements 1 are higher in simply supported layers.

In Figure 3, we observe that curves change their slope abruptly, leading to sudden increase in A. This is
due to the layer wrapping around the punch rapidly with only a small increase in the load on the punch or in
its displacement. This wrapping happens when the profile of the layer’s top surface begins to conform with the
punch’s profile, as shown in Figure 4. As slender layers bend easily, wrapping initiates in such layers at lower
loads (Figures 3(a) and (c)) and smaller displacements (Figures 3(b) and (d)).

3.2. Adhesive contact: JKR approximation

A JKR-like approximation is recovered when the scaled adhesive strength λ → ∞ and the adhesive zone
vanishes, that is c̄ → 1. In this limit, the discretization of equations (2) and (3) continues to be given by,
respectively, equations (22) and (23). The condition on the contact pressure at x = ±a is determined by Griffith’s
criterion (equation (20)). We now solve equations (22), (23) and (20) following the algorithm of Appendix C.

We first plot contact stresses ϕ (x) for several contact areas A in Figure 5. We observe that ϕ is negative
(tensile) and singular at contact edges, which is typical of the JKR approximation. As in Section 3.1, with
increasing A the maximum compressive contact stresses are found near the contact edges and a double-humped
profile is observed. For high A, ϕ becomes negative (tensile) at the centre of the contact area. The region over
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Figure 3. Non-adhesive contact of clamped (top row) and simply supported (bottom row) layers. Variation of contact area A with

total load P̄ (left column) and the punch’s displacement 1 (right column) is shown. Several slenderness ratios l/h are considered and

these are noted next to their associated curves.

Figure 4. Non-adhesive contact of a clamped layer. We plot the non-dimensional displacement 1 − v (x, 0) with respect to the

cylindrical punch of the layer’s top surface. Several A are investigated as noted next to the curves. We set h = 4 mm and l = 40 mm.

which this tensile stress acts also increases by increasing A; see inset in Figure 5. Moreover, multiple regions of
tensile stresses are also seen; see A = 7 curve in the inset of Figure 5(b). The presence of negative ϕ, however,
does not indicate contact separation as tensile stresses are admitted in the JKR approximation, and are supposed
to reflect adhesive interaction. Finally, comparing Figures 5(a) and (b), we find that, as expected, much less
pressure is required in simply supported layers to achieve the same contact area.
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Figure 5. Adhesive contact of (a) clamped and (b) simply supported layers with the JKR approximation. We plot the contact

pressures ϕ (x) at several A whose values are noted next to their corresponding curves. We set h = 4 mm and l = 20 mm. The insets

show the pressure profiles at lower values of x. We note that ϕ → −∞ as x → 1, which is typical of the JKR approximation. For high

A, ϕ is negative, that is tensile, at the centre of the contact area, and in multiple regions when A = 7 for a simply supported layer.

Figure 6. Adhesive contact of clamped layers with the JKR approximation. Variation of contact area A with (a) total load P̄ and (b)

the punch’s displacement 1 is shown. The layer’s slenderness ratio l/h = 10. The solid line corresponds to l = 40 mm and h = 4

mm, while the dashed line is for a layer with l = 80 mm and h = 8 mm.

In Figure 6 we plot the variation of the contact area A with the load P̄ acting on the punch and the dis-
placement 1 of the punch for clamped layers. The slenderness ratio l/h is kept constant, but two different
combinations of l and h are investigated. We observe that the response of the layer is sensitive to l and h
individually, and not on the slenderness ratio alone. The results for simply supported layers are qualitatively
similar.

Results in Figure 7 are obtained for several l/h by varying l while keeping h = 4 mm. However, the results
are qualitatively similar in many respects to those obtained by varying h. Layers with high l/h bend easily
under the influence of adhesion, and we observe smaller negative loads P̄ and larger negative displacements
1 at a given contact area A. Negative loads and displacements indicate, respectively, downward force on the
punch and the upward bending of layers. From Figure 7 we again observe that slender layers wrap around the
punch earlier, that is at smaller P̄, as indicated by the sudden changes in the slope in A–P̄ and A–1 curves in
Figure 7. For sufficiently slender layers (e.g. the curves for l/h = 20 in Figure 7), wrapping occurs even when
there is no net compressive (positive) load on the punch. In these very flexible layers, bending resistance is
unable to even counterbalance adhesive forces. Such adhesive layers have MEMs/NEMs applications [11, 12].
Finally, from Figures 7(a) and (b), for l/h=5, we observe that at high A the load response increases abruptly. This
is due to the influence of the end supports on the contact area. The above features, namely extent of wrapping
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(d)

Figure 7. Adhesive contact of clamped (top row) and simply supported layers (bottom row) with the JKR approximation. Variation

of contact area A with total load (left column) P̄ and the punch’s displacement 1 (right column) is shown. Results are obtained for

several values of l/h, as noted next to their corresponding curves, while keeping h = 4 mm.

and the response to adhesive forces, are, expectedly, heightened in the case of simply supported layers, whose
bending resistance is smaller.

From Figure 7(c) we observe that, for A & 1.5, in a simply supported layer of l/h = 5, the load P̄ decreases
with increase in contact area A. At the same time, the punch’s displacement 1 increases; see the inset in Figure
7(d). This anomalous behaviour is explained by the presence of negative (tensile) stresses at the centre of the
contact region in addition to the very large negative stresses at the contact edges. The contact region over which
these tensile stresses act also grows with increase in contact area; see Figure 5. Because of this the net force on
the punch may start to decrease at large A, as is observed when l/h = 5.

3.3. Adhesive contact with an adhesive-zone model

Finally, we study the indentation of adhesive layers with the help of adhesive-zone models. In these models an
adhesive force acts over an adhesive zone of length d = c − a outside the contact area. The distribution of the
adhesive forces follows the Dugdale–Barenblatt model [4], and the normal traction on the layer’s top surface is
given by equation (7). The contact problem is resolved by solving equations (16)–(19) following the algorithm
of Appendix C.

We plot the contact pressure ϕ for different adhesive strengths λ in Figure 8. We observe that the contact
stresses are tensile at the contact edges, and remain constant at −λA/2m over the adhesive zone. With increasing
λ, the contact stress distribution in Figure 8 approaches that of the JKR approximation in Figure 5. We also see
in Figure 8 that the adhesive zone shrinks outside the contact area. For example, as shown in Figure 8, the
pressure profile for λ = 3 matches closely that obtained through the JKR approximation of Section 3.2.
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Figure 8. Adhesive contact of clamped layers with an adhesive-zone model. We plot the non-dimensional contact pressures ϕ (x) at

A = 4 for several adhesive strengths λ that are noted next to their corresponding curves. We set h = 4 mm and l = 40 mm. Filled

circles represent results from the JKR approximation of Section 3.2.

For brevity we investigate the effect of only the adhesive strength λ (see equation (1)) at a given l and h.
The response to varying l/h is found to be similar to what was observed in Section 3.2. In Figure 9 we plot
the variation of the contact area A with the total load P̄ and the displacement 1 for several adhesive strengths
λ. We observe that, as λ → 0, the results approach those obtained for non-adhesive indentation discussed in
Section 3.1. At the same time, increasing adhesive strength pushes our results towards those obtained for the
JKR approximation in Section 3.2.

Next, we study the effect of adhesive strength λ on the adhesive zone’s size d = c − 1. For this we plot d by
varying A for several λ in Figure 10(a). We observe that with increasing λ, d goes rapidly to zero. At high λ the
adhesive zone is small, and such cases may be addressed adequately through the JKR approximation of Section
3.2. Finally, as seen in Figure 10(b), varying the geometric parameters of the layer, as well as the type of end
supports, does not affect the adhesive zone’s size significantly, which depends most crucially on λ.

4. Experiments and applications

In this final section, we compare our theoretical predictions with preliminary experiments on a clamped adhesive
layer, as well as demonstrate the ability of our theoretical methods to model structural adhesives.

4.1. Experiments

Punati et al. [26] experimentally investigated the indentation of a clamped PDMS (poly-dimethyl-siloxane) layer
by a cylindrical glass punch. To make PDMS samples, a uniform mixture of Sylgard 184 silicone elastomer base
and curing agent is prepared by taking them in 10:1 weight ratio. Air is desiccated from this mixture, which is
then poured into a rectangular mould of desired size. This is cured at room temperature (≈ 24◦C) for two days
and the PDMS sample is extracted from the mould.

Micro-tensile tests were carried out on PDMS samples, and JKR indentation tests (Figure 11(a)) were per-
formed on thick (h ≈ 25 mm) PDMS samples. Young’s modulus E of PDMS was found to be in the range of
1–2 MPa while, following Chaudhury et al. [31], the work of adhesion w ≈ 27 mJ/m2. These values compare
well with those reported earlier in the literature [32, 33]. Figure 11(b) shows the fit of the a–P curve predicted
by JKR theory with our experimental data.

We then carried out contact mechanics experiments on a clamped PDMS layer with half-span and thickness
maintained at l ≈ 50 mm and h ≈ 8 mm, respectively, as shown in Figure 11(a). The total load P and contact
patch width 2a were measured. The results obtained were then compared with the predictions of the analysis
of Section 3.2 in Figure 11(b). We find very good agreement. We observe that the results for a layer vary
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Figure 9. Adhesive contact of clamped (top row) and simply supported (bottom row) layers with an adhesive-zone model. Variation

of contact area A with total load P̄ (left column) and punch’s displacement 1 (right column) is shown. Different adhesive strengths

λ are considered and these are indicated next to their associated curves. The layer’s thickness h = 4 mm and half-span l = 40 mm.

Filled circles represent the JKR solution for the corresponding layer; see Section 3.2

considerably from that of a half-space, lending support to the necessity for a separate theoretical development
for adhesive elastic layers, as presented here.

Finally, we compare our results for adhesive, free-standing layers with those due to more approximate
approaches [26]. We consider several geometric and material parameters for the layers and plot variation of
the total load P with punch displacement δ in Figure 12. From Figure 12(a), we observe that with decreasing l/h
approximate theories are erroneous. This is because Punati et al. [26] estimated the vertical displacement of the
layer’s bottom surface by replacing the distributed interaction pressure on the layer’s top surface by a point load.
This approach fails when the layer’s thickness is such that contact deformations are accommodated locally and
not in the layer’s global deformation. Indeed, the inset in Figure 12(a) shows that the vertical displacements of
the layer’s top and bottom surfaces are consistently lower when we follow the approximate approach [26]. This
translates into the layer displaying higher stiffness. Similarly, in Figure 12(b), we show the effect of adhesion
energy w on the P − δ response for a layer with h = 0.3 mm. We find that the approximation of Punati et al.
[26] fails for all w. Combined with the observation of Figure 11 that layers with l/h 6 2 can be approximated
by half-spaces, the comparisons of Figure 12 suggest that in applications with 2 6 l/h 6 3.3, the more exact
formulation of the current work should be employed.

More thorough indentation experiments on adhesive elastic layers, where we vary parameters like flexibility
of end supports, layers thickness h and the work of adhesion w are in progress.
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Figure 10. (a) Variation of the adhesive zone size d with the the contact area A at different adhesive strengths λ for a clamped layer.

We set l = 40 mm and h = 4 mm. (b) Variation of the adhesive zone size d with the contact area A for clamped (‘c’) and simply

supported (‘s’ ) layers when λ = 0.5. Solid and dashed lines are the predictions of the clamped layer with h = 4 mm, l = 40 mm, and

h = 8 mm, l = 80 mm, respectively, while the filled circles indicate results obtained for a simply supported layer with h = 4 mm,

l = 40 mm.

Figure 11. (a) Indentation experiments on PDMS layers. The layers are rigidly attached to the micro-positioner and a cylindrical glass

punch of radius R ≈ 27.5 mm is placed on top of the semi-micro balance. The layers are brought into contact with the glass punch

using the micro-positioner. The rectangular contact patch is observed through a microscope to note the contact width a, and the

load P acting on the punch is noted from the semi-micro balance. Insets show a close-up of the side view of the indentation and a top

view of the contact patch. (b) Variation of the contact area a (in mm) with the total load P (in g). Filled circles represent experimental

data. Solid lines correspond to theoretical predictions. For h = 8 mm we followed Section 3.2, while for h = 25 mm we employed

the standard JKR formula for a half-space [31].

4.2. Application

We now demonstrate the utility of our semi-analytical procedure in modelling structural adhesives with one
micro-channel developed by Arul and Ghatak [33], shown in Figure 13(a). We employ the parameters shown in
Table 1. The stiffnesses of the flexible end supports are estimated from a strength-of-materials approach to be

kf
s ≈ 12b

′
l3/hch

3 and k
f
t ≈ lb

′ 3
/hch

3, where the geometrical parameters are indicated in Figure 13(a). We have

assumed b
′
> h, as b

′
is not reported by Arul and Ghatak [33].

We compare our results for clamped and simply supported layers with the experiments of Arul and Ghatak
[33] in Figure 13(b). The adhesive strength of the PDMS used in the experiments [33] was such that the JKR
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Figure 12. Adhesive contact of clamped layer with JKR approximation. The layer has l = 1 mm, R = 1.1 mm and E = 1 MPa. Solid

lines represent results of the approximate procedure (section 7 in Punati et al. [26]), while the dashed lines are predictions from

Section 3.2. Variation of the total load P with the punch’s displacement δ is shown by varying (a) the layer’s thickness h and (b) the

work of adhesion w. In (a), three different slenderness ratios l/h are considered as noted next to their curves after setting w = 27

mJ/m2, while in (b) we set l/h = 10/3 and investigate two adhesion values: w1 = 27 mJ/m2 and w2 = 270 mJ/m2. The insets in (a)

represent the y coordinate of the layer’s top (T) and bottom (B) surfaces during the indentation when a = 0.25 mm.

Figure 13. (a) A structural adhesive with one micro-channel. (b) Variation of the total load P with the punch’s displacement δ. The

solid lines represent solutions obtained from the procedure of Section 3.2, with ‘c’ and ‘s’ indicating clamped and simply supported

layers, respectively. Asterisks (*) are the experimental results of Arul and Ghatak [33].

Table 1. Geometrical and material parameters considered for modelling adhesives with one micro-channel; see also Figure 13(a).

Geometrical and material parameters Value [33]

Layer thickness h = 0.8 mm

Micro-channel’s thickness hc = 0.1 mm

Layer’s length 2l = 5–8 mm

Punch radius R = 2.24 mm

Punch length lp = 2.7 mm

Shear modulus G = 1 MPa

Poisson’s ratio ν = 0.49

Young’s modulus E = 2 (1 + ν) ≈ 3 MPa

Work of adhesion w = 45 × 10−6 N/mm
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approximation could be invoked [34]. Thus, we follow the procedure of Section 3.2 to generate theoretical
predictions. We find good agreement of our results for a clamped layer with experiments up to an indentation
depth δ ≈ 0.1 mm, that is until the point S23. At this point, the bottom surface S2 begins to interact with the
surface S3 in experiments; see Figure 13(a). This feature is not yet implemented in our mathematical model,
so it is expected that our predictions will deviate from the experimental observations once surfaces S2 and S3

touch. It is important to note that the results obtained for a simply supported layer do not match experiments
well in Figure 13(b). This again underscores the role played by the layer’s supports in the indentation process,
so they need to be modelled carefully.

5. Conclusions

We investigated the indentation of finite, free-standing adhesive elastic layers by solving two coupled Fredholm
integral equations of the first kind for the contact pressure p and the displacement vb of the bottom surface.
These equations were solved through a collocation technique employing series approximations for p and vb.
We then compared our results for non-adhesive indentation with our FE simulations and previously published
results, and found a satisfactory match. New results about non-adhesive indentation were then presented. Next,
we investigated adhesive contact of layers when the JKR approximation is invoked and when an adhesive-zone
model is utilized. We then compared theoretical predictions with our preliminary experiments on a clamped
adhesive layer and found a very good match. Finally, we showed the utility of our approach to model structural
adhesives developed by Arul and Ghatak [33]. The two experimental comparisons demonstrated the importance
of including both the layer-like behaviour3 of structural adhesives in theoretical models, as well as correctly
modelling the free-standing layer’s end supports.

We are presently pursuing extensive experiments on the indentation of free-standing adhesive layers. In the
future we aim to extend the present approach to three-dimensional, axisymmetric indentation. By suitably mod-
ifying the top and bottom boundary conditions in our theoretical formulation we may also study the adhesion
characteristics of graphene membranes in MEMS/NEMS, delamination of elastic layers and grip-and-release
processes.
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Notes

1. In dimensional form, energy balance is given by σ0δc = w.

2. In dimensional form, Griffith’s criterion is the equation K2
1/2E∗ = w.

3. Rather than modelling these structures as films on a substrate or as half-spaces.
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Appendix A Governing equations

In plane strain, the horizontal (u) and vertical (v) displacements of the (extended) elastic layer of Figure 1(b)
are governed by

2 (1 − ν)

1 − 2ν

∂2u

∂x2
+ ∂2u

∂y2
+ 1

1 − 2ν

∂2v

∂x∂y
= 0 (24a)

and
∂2v

∂x2
+ 2 (1 − ν)

1 − 2ν

∂2v

∂y2
+ 1

1 − 2ν

∂2u

∂x∂y
= 0, (24b)

respectively [35, 36]. We now employ Fourier transforms [27]. In Fourier space the transformed horizontal and
vertical displacements may be solved as, respectively,

U (ξ , y) = {κa1 + ξy (a1 + ia3)} eξy + {κb1 − ξy (b1 − ib3)} e−ξy (25)

and V (ξ , y) = {κa3 + iξy (a1 + ia3)} eξy + {κb3 + iξy (b1 − ib3)} e−ξy, (26)

with

U (ξ , y) =
∞
∫

−∞

u (x, y) eiξxdx, V (ξ , y) =
∞
∫

−∞

v (x, y) eiξxdx,

and a1, a3, b1 and b3 being unknown constants. These constants are found by applying boundary conditions

σxy = 0, σyy = −Pc(x) on the top surface, that is at y = 0, (27a)

and σxy = 0, v = vb(x) on the bottom surface, that is at y = h, (27b)

which in Fourier space become, respectively,

Sξy = 0, Syy = P̄c(ξ ) at y = 0, (28a)

and Sξy = 0, V = v̄b(ξ ) at y = h, (28b)

with

Sξy = E

2 (1 + ν)

(

d

dy
U − iξV

)

,

Syy = E

(1 + ν)

{

d

dy
V + ν

1 − 2ν

(

−iξU + d

dy
V

)}

,

P̄c(ξ ) =
∞
∫

−∞

−Pc (x) eiξxdx

and v̄b(ξ ) =
∞
∫

−∞

vb (x) eiξxdx.

With this, we find the vertical displacement of the top surface in Fourier space to be

V (ξ , 0) = − 2 P̄c (ξ )

E∗
sinh2 ξ h

ξ (ξ h + sinh ξ h cosh ξ h)
+ v̄b (ξ )

sinh ξ h + ξ h cosh ξ h

ξ h + sinh ξ h cosh ξ h
,

while the normal traction at the bottom layer in Fourier space is

Syy (ξ , h) = P̄c (ξ )
sinh ξ h + ξ h cosh ξ h

ξ h + sinh ξ h cosh ξ h
+ E∗v̄b (ξ )

ξ

2

sinh2 ξ h − ξ 2 h2

ξ h + sinh ξ h cosh ξ h
,
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where E∗ = E/
(

1 − ν2
)

.
Employing the inverse Fourier transforms yields the vertical displacement of the layer’s top surface (y = 0)

and the normal traction acting on the layer’s bottom surface (y = h) as, respectively,

v (x, 0) = − 2

πE∗

∞
∫

0

P̄c (ξ ) K1 (ξ , x) dξ + 1

π

∞
∫

0

v̄b (ξ ) K2 (ξ , x) dξ (29)

and σyy (x, h) = 1

π

∞
∫

0

P̄c (ξ ) K2 (ξ , x) dξ + E∗

π

∞
∫

0

v̄b (ξ ) K3 (ξ , x) cos ξx dξ , (30)

where

P̄c (ξ ) =
∞
∫

−∞

−Pc (t) cos ξ t dt and v̄b (ξ ) =
∞
∫

−∞

vb (t) cos ξ t dt (31)

are the Fourier transforms of the normal force Pc (t) and the vertical displacement vb (t), while

K1 (ξ , x) = sinh2 ξh

ξ (ξh + sinh ξh cosh ξh)
cos ξx,

K2 (ξ , x) = sinh ξh + ξh cosh ξh

ξh + sinh ξh cosh ξh
cos ξx

and K3 (ξ , x) = ξ

2
· sinh2 ξh − ξ 2h2

ξh + sinh ξh cosh ξh
cos ξx.

We expand equations (29) and (30) by employing definitions of P̄c and v̄b to obtain:

v (x, 0) = 2

πE∗

∞
∫

0

∞
∫

−∞

Pc (t) cos ξ t dt K1 (ξ , x) dξ

+ 1

π

∞
∫

0

∞
∫

−∞

vb (t) cos ξ t dt K2 (ξ , x) dξ (32)

and σyy (x, h) = 1

π

∞
∫

0

∞
∫

−∞

−Pc (t) cos ξ t dt K2 (ξ , x) dξ

+ E∗

π

∞
∫

0

∞
∫

−∞

vb (t) cos ξ t dt K3 (ξ , x) dξ . (33)

In equation (33), the second integral is singular at ξ → ∞. This singularity is eliminated by integrating twice
by parts, to find

σyy (x, h) = 1

π

∞
∫

0

∞
∫

−∞

−Pc (t) cos ξ t dt K2 (ξ , x) dξ

− E∗

π

∞
∫

0

∞
∫

−∞

κb (t) cos ξ t dt
1

ξ 2
K3 (ξ , x) dξ , (34)

where κb (t) = d2vb/dt2 is the curvature of the layer’s bottom surface. Equations (32) and (34) lead to the
governing equations (2) and (3) of the main text, after non-dimensionalization and imposing the traction and
kinematic conditions on the top and bottom surfaces of the layer.
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Appendix B Displacement of the layer’s bottom surface

We approximate the vertical displacement of the bottom surface in a layer that is clamped at its ends as

vc
b (χ ) = dc

0 +
M
∑

n=1

dc
n cos (nπχ ) . (35)

The above displacement field is symmetric in χ , that is vc
b (χ ) = vc

b (−χ ). The slope conditions at the ends, that
is dvc

b/dχ = 0 at χ = ±1, are automatically satisfied. We find the unknown coefficient dc
0 in equation (35) by

invoking vc
b (±1) = 0, to obtain

dc
0 =

M
∑

n=1

dc
n (−1)n+1 . (36)

Combining equations (35) and (36) yields

vc
b (χ ) =

M
∑

n=1

dc
n

[

(−1)n+1 + cos (nπχ )
]

. (37)

Differentiating the above twice with respect to χ provides, finally,

κc
b (χ ) = −π2

M
∑

n=1

dc
nn2 cos (nπχ ) . (38)

For a simply supported elastic layer, we approximate the vertical displacement of the bottom surface within
−1 ≤ χ ≤ 1 as

vs
b (χ ) = ds

0 +
M
∑

n=1

ds
2n−1 sin

{

(2n − 1) π (χ + 1)

2

}

. (39)

Note that the above is symmetric about χ = 0, as it should be. The above displacement field also satisfies

d2vs
b/dχ2 = 0 at χ = ±1, as appropriate for a simply supported layer. Satisfying vs (±1) = 0 yields the

unknown constant ds
0 = 0. Hence, vs

b (χ ) becomes

vs
b (χ ) =

M
∑

n=1

ds
2n−1 (−1)n−1 cos

{

(2n − 1) πχ

2

}

. (40)

Differentiating the above twice we obtain the curvature κs
b (χ ) as

κs
b (χ ) = −

M
∑

n=1

ds
2n−1 (−1)n−1

{

(2n − 1) π

2

}2

cos

{

(2n − 1) πχ

2

}

, −1 ≤ χ ≤ 1. (41)

Calculating the slope at the ends of the layer yields

dvs
b (χ )

dχ

∣

∣

∣

∣

χ=1

= −
M
∑

n=1

ds
2n−1

(2n − 1) π

2
. (42)

Finally, finding the displacement in 1 < χ < ∞, after extending the layer along its slope at the end supports
(see Figure 1(b)), we obtain

vs
b (χ ) = dvs (χ )

dχ

∣

∣

∣

∣

χ=1

(χ − 1) . (43)
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Appendix C Discretization and numerical algorithm

Substituting equations (14) and (15) into the integral equations (2) and (3) yields, respectively,

1 − 1

2
x2A2 = 8m

3π

N
∑

n=0

b2nJ
t

2n (x) − 8λA

3π
J t (x) + 1

πγ

M
∑

n=1

dnQ
t
n (x) (44)

and 0 = 8m

3π

N
∑

n=0

b2nJ
b

2n (χ ) − 8λA

3π
J b (χ ) + γ̂

π

M
∑

n=1

dnQ
b
n (χ ) , (45)

where

J t
2n (x) =

∞
∫

0

α2n

(ω

h

)

K t
1

(ω

h
, x
)

dω,

J t (x) =
∞
∫

0

h

ω
sin
(ωc

h

)

K t
1

(ω

h
, x
)

dω,

Qt
n (x) =

∞
∫

0

β̄n

(

ω

γ

)

K t
2

(ω

h
, x
)

dω,

Qb
n (χ ) =

∞
∫

0

κ̄n

(

ω

γ

)

Kb
2

(

ω

γ
, χ

)

dω, (46)

J b
2n (χ ) =

∞
∫

0

α2n

(ω

h

)

Kb
1

(

ω

γ
, χ

)

dω

and J b (χ ) =
∞
∫

0

h

ω
sin
(ωc

h

)

Kb
1

(

ω

γ
, χ

)

dω

are known in terms of the functions β̄n and κ̄n that are obtained from the displacement of the bottom surface in
Appendix E, while

α2n (s) =
1
∫

−1

1
√

(1 − τ 2)
T2n (τ ) cos (sτ ) dτ , (47)

which are computed in closed form in Appendix F. The integrals in equation (46) are computed at any x or χ
through the Clenshaw–Curtis quadrature [37]. We now solve equations (44) and (45) through the collocation
technique [38].

In the collocation method, equations (44) and (45) are required to hold exactly at, respectively, N + 1 and M
collocation points. The collocation points for equations (44) and (45) are selected to be, respectively,

xi = cos

{

(2i − 1) π

2 (N + 1)

}

for i = 1, · · · , N + 1,

and χk = k − 1

M
for k = 1, · · · , M .

Here, xi are the N + 1 zeros of the Chebyshev polynomial T2N+2(xi) [39], while χk are equally spaced points
lying between 0 and 1. At these collocation points, equations (44) and (45) become, respectively, equations (16)
and (17). In addition to these, we also have the end condition (18) and energy balance (19). The N + M + 3
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nonlinear algebraic equations (16)–(19) are to be solved for N + M + 3 unknowns b2n, dn, 1 and c. This is done
through the following algorithm:

Step 1: For a given contact area A, we make an initial guess for c.
Step 2: We then write equations (16) and (17) in matrix notation as

1 e − f − λ = R a, (48)

where

e =
[

et, eb
]T

; f =
[

f t, f b
]T

; λ =
[

λt, λb
]T

;

a =
[

at, ab
]T

; R =
[

J
t

Q
t

J
b

Q
b

]

, (49)

with

at
i = b2i−2; ab

k = dk; et
i = 1; eb

k = 0;

f t
i = x2

i A2

2
; f b

k = 0; λt
i = −8λA

3π
J t (xi) ;

λb
k = −8λA

3π
J b (χk) ; J t

i j = 8m

3π
J t

2j−2 (xi) ;

Qt
i r = 1

πγ
Qt

r (xi) ; J b
k j = 8m

3π
J b

2j−2 (χk) ;

Qb
i r = γ

π
Qb

r (χk) , (50)

for i, j = 1, 2, · · · , N + 1 and k, r = 1, 2, · · · , M . Thus, e, f , λ, a are column vectors of size N + M + 1, and

R is a square matrix of size N + M + 1.

Step 3: The column vector a consists of the coefficients occurring in expressions (14) for the contact pressure
and (15) for the displacement. We invert equation (48) to find a in terms of 1:

a = 1E − F − 3, (51)

where

E = R−1e, F = R−1f and 3 = R−1λ .

Step 4: Employing the end condition (18) for the contact pressure, we obtain the punch’s displacement

1 = p0 +
∑N+1

i=1 Fi +
∑N+1

i=1 3i
∑N+1

i=1 Ei

, (52)

where

p0 =
{

0 if there is no adhesion or an adhesive zone is present,

−
√

6A/2πm if the JKR approximation is invoked; see equation (20).

Step 5: Once 1 is known, we evaluate a from equation (51) through

a =
(

p0 +
∑N+1

i=1 Fi +
∑N+1

i=1 3i
∑N+1

i=1 Ei

)

E − F − 3. (53)

Step 6: Utilizing 1 and a, we calculate the displacement of the layer’s top surface at c and check whether equa-
tion (19) holds. If not, then we update c employing the Newton–Raphson method [40]. Steps 1–6 are repeated
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until equation (19) is satisfied. Steps 1 and 6 are required only when we employ an adhesive zone. When the
Hertzian or JKR approximations are invoked, we skip Steps 1 and 6.

Step 7: We finally proceed to find the contact pressure distribution ϕ (x) and the total load P̄ from equations (14)
and (21), respectively.

Appendix D Non-adhesive contact

Finite element (FE) computations are carried out for clamped and simply supported elastic layers for
adhesionless contact. These are employed to validate our semi-analytical results.

The FE model is prepared in ABAQUS as follows. The finite linear elastic layer of Young’s modulus E =
2000 MPa, Poisson’s ratio ν = 0.3, thickness h = 4 mm and half-span l = 40 mm is modelled. The rigid
cylindrical punch is modelled as a much stiffer elastic material with Young’s modulus Ep = 2 × 108 MPa and
radius R = 225 mm. Plane-strain elements are considered both for the layer and the punch. A concentrated load
is applied on the punch. Computations provide the contact pressure ϕ, contact area A, punch’s displacement 1
and the displacement vb of the layer’s bottom surface. In these computations the ‘nlin-geom’ option in ABAQUS
was not selected as we are comparing with the linearized theory of Section 2.

We will employ the following non-dimensional variables to compare with FE computations and available
literature:

Â = a

l
, ϕ̂ (x) = aRl

Kh3
p (x) , φ (x) = ap(x)

P
,

P̂ = PRl

Kh3
and 1̂ = δR

l2
. (54)

Figure 14 plots ϕ̂ (x) and φ(x) obtained for both clamped and simply supported elastic layers. These pressure
profiles are plotted at different values of a/h by varying the contact area a. Comparing Figures 14 (a) and (c)
we find that, at the same a/h, the contact pressure ϕ̂ in a simply supported layer is lower than that in a clamped
layer. However, this difference is suppressed when we plot ap(x)/P; see Figures 14(b) and 14(d).

We observe a close match between our predictions and FE simulations for all a/h, except for a small devi-
ation between the two at a/h = 2.5 in the case of simply supported layers. This may be due to the shear-free
boundary condition at the top and bottom surface of the layer that was employed in the theoretical model but
is not imposed in the FE model. Loss of contact at deeper indentation is predicted by both theory and FE com-
putations. Theory predicts contact loss when a/h & 2.5 for clamped layers and when a/h & 2.5 for simply
supported layers. The FE results agree with the former, but find contact loss when a/h & 2.25 for the latter
case.

Next, in Figure 15 we compare our results for contact pressures φ (x) with those of Keer and Miller [23].
We find an extremely close match between the two until a/h ≈ 2. Beyond that, we find negative pressures
– indicating contact loss – at the centre of the contact patch, whereas Keer and Miller [23] do not. Earlier
formulations of Keer and Miller [23] – also Sankar and Sun [24] which we discuss below – did not predict
contact loss. Figure 15 reaffirms our earlier observation that contact pressures of clamped and simply supported
layers do not vary much, when scaled as ap(x)/P.

Finally, in Figure 16 we plot the variation of the contact area Â with the total load P̂ on the punch and

the punch’s displacement 1̂. We also compare with FE computations and results of Sankar and Sun [25]. This

process is repeated for the variation of 1̂ with P̂ in Figure 17. We find a close match of our theoretical predictions
with FE computations and the earlier results of Sankar and Sun [24].

Appendix E Evaluating v̄b (ω/γ ) and κ̄b (ω/γ )

The Fourier transforms of vb and κb cannot always be computed as these functions may not be well-behaved at
infinity for the extended layer. Indeed, in a simply supported layer, the displacement grows linearly to infinity
outside the supports. To address this we employ mollifiers to regularize the Fourier transforms v̄b (ω/γ ) and
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Figure 14. The non-dimensional contact pressures ϕ̂ (x) and φ (x) during the non-adhesive indentation of clamped (top row) and

simply supported (bottom row) layers. We set h = 4 mm and l = 40 mm. Several contact areas a are investigated by varying a/h as

noted next to their corresponding curves. The solid lines are results obtained from the semi-analytical procedure of Section 2, while

dashed lines represent finite element computations.

Figure 15. The non-dimensional contact pressures φ (x) during the non-adhesive indentation of (a) a clamped layer and (b) a simply

supported layer. The slenderness ratio of the layer l/h = 10. Several contact areas a are investigated by varying a/h as noted next to

their corresponding curves. The solid lines are results obtained from the semi-analytical procedure of Section 2. Dots represent the

predictions of Keer and Miller [23].
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Figure 16. Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) layers. The contact area Â is plotted as a function of (a)

the total load P̂ acting on the punch and (b) the punch’s displacement 1̂. The layer’s slenderness ratio l/h=10. Solid lines are results

obtained from the semi-analytical procedure of Section 2. Filled circles correspond to our finite element simulations. Predictions of

Sankar and Sun [24] are shown by open circles, when available.

Figure 17. Non-adhesive contact of clamped (‘c’) and simply supported (‘s’) layers. The displacement 1̂ of the punch is shown as a

function of the total load P̂. See also the caption of Figure 16.

κ̄b (ω/γ ) as follows:

v̄b

(

ω

γ

)

=
∞
∫

−∞

vb (τ ) W (τ ) cos

(

ωτ

γ

)

dτ (55)

and κ̄b

(

ω

γ

)

=
∞
∫

−∞

d2

dτ 2
[vb (τ ) W (τ )] cos

(

ωτ

γ

)

dτ , (56)

where the mollifier W (τ ) is defined [41] as

W (τ ) =
{

1 for |τ | ≤ |l1| ,
w2 (τ ) for |l1| < |τ | < |l2|
0 for |τ | ≥ |l2| ,

, (57a)

with w2 (τ ) =
exp

{

−1/ (l2 − τ )2
}

exp
{

−1/ (l2 − τ )2
}

+ exp
{

−1/ (τ − l1)2
} , (57b)
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and l1 and l2 locate points on the layer that are far away from the ends with l2 > l1 � 1. The mollifier W (τ ) is
infinitely differentiable, and alters the displacement far from the layer’s ends and makes it integrable. Because
the layer’s displacement is modified far from the supports, we do not expect any impact on the indentation
process in keeping with St. Venant’s principle [36].

For a clamped layer we obtain from equations (55) and (56)

v̄c
b

(

ω

γ

)

=
M
∑

n=1

dc
nβ̄

c
n

(

ω

γ

)

and κ̄c
b

(

ω

γ

)

=
M
∑

n=1

dc
nκ̄

c
n

(

ω

γ

)

, (58)

where

β̄c
n

(

ω

γ

)

= 2γ (−1)n+1 sin (ω/γ )

ω
+ 2ωγ (−1)n+1 sin (ω/γ )

n2π2γ 2 − ω2
(59)

and κ̄c
n

(

ω

γ

)

= −n2π2 2ωγ (−1)n+1 sin (ω/γ )

n2π2γ 2 − ω2
. (60)

For a simply supported layer we find from equations (55) and (56)

v̄s
b

(

ω

γ

)

=
M
∑

n=1

d̃s
n β̄s

n

(

ω

γ

)

and κ̄s
b

(

ω

γ

)

=
M
∑

n=1

d̃s
nκ̄

s
n

(

ω

γ

)

, (61)

where d̃s
n = ds

2n−1,

β̄s
n

(

ω

γ

)

=
1
∫

−1

(−1)n−1 cos

{

(2n − 1) πτ

2

}

cos

(

ωτ

γ

)

dτ

− (2n − 1) π

l2
∫

1

(τ − 1) W (τ ) cos

(

ωτ

γ

)

dτ

and κ̄s
n

(

ω

γ

)

= −
{

(2n − 1) π

2

}2
1
∫

−1

(−1)n−1 cos

{

(2n − 1) πτ

2

}

cos

(

ωτ

γ

)

dτ

− 2 (2n − 1) π

l2
∫

l1

dw2 (τ )

dτ
cos

(

ωτ

γ

)

dτ

− (2n − 1) π

l2
∫

l1

(τ − 1)
d2w2 (τ )

dτ 2
cos

(

ωτ

γ

)

dτ . (62)

Finally, employing equations (58) and (61), we may write

v̄b

(

ω

γ

)

=
M
∑

n=1

dnβ̄n

(

ω

γ

)

and κ̄b

(

ω

γ

)

=
M
∑

n=1

dnκ̄n

(

ω

γ

)

, (63)

where β̄n and κ̄n are given by equations (60) and (62) for clamped and simply supported layers, respectively.
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Appendix F Evaluating ϕ̄ (ω/h) and ϕ̄0 (ω/h)

When the series expansion (equation (14) in the main text) is employed to compute ϕ̄ and ϕ̄0, we obtain

ϕ̄
(ω

h

)

= λAh

m

sin (ω/h)

ω
−

N
∑

n=0

b2nα2n

(ω

h

)

and ϕ̄0

(ω

h

)

= h

ω

{

− sin
(ω

h

)

+ sin
(ωc

h

)}

, (64)

where

α2n

(ω

h

)

=
1
∫

−1

1
√

(1 − τ 2)
T2n (τ ) cos

(ωτ

h

)

dτ . (65)

We now compute the above integrals explicitly. First, consider odd n. For this, the integrand is an odd function
so that

α2n−1 (ζ ) = 0, (66)

where ζ = ω/h. Next, evaluating equation (65) for even n, we obtain the first few αn as

α0 (ζ ) =π J (0, ζ ),

α2 (ζ ) =π J (0, ζ ) − 2 π J (1, ζ )

ζ
,

α4 (ζ ) =π J (0, ζ ) − 8 π J (1, ζ )

ζ
− 24 π J (0, ζ )

ζ 2
+ 48 π J (1, ζ )

ζ 3
,

and α6 (ζ ) =π J (0, ζ ) − 18 π J (1, ζ )

ζ
− 144 π J (0, ζ )

ζ 2
+ 768 π J (1, ζ )

ζ 3

+ 1920 π J (0, ζ )

ζ 4
− 3840 π J (1, ζ )

ζ 5
, (67)

where J (n, ξ ) are Bessel’s functions of the first kind of order n [29]. Employing the recurrence relation [29],

J (n + 1, ζ ) = 2n

ζ
J (n, ζ ) − J (n − 1, ζ ),

we rewrite equation (67) as

α2 (ζ ) = −π J (2, ζ ), α4 (ζ ) = π J (4, ζ ) and α6 (ζ ) = −π J (6, ζ ).

In general, it is possible to show that

α2n (ζ ) = (−1)n π J (2n, ζ ). (68)

Finally, substituting ζ = ω/h in the above yields

α2n

(ω

h

)

= (−1)n π J
(

2n,
ω

h

)

. (69)




