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SEISMIC DRIFT ESTIMATES FOR RC STRUCTURES
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ABSTRACT

The maximum nonlinear displacement of RC structures subjected to strong ground motion may be estimated
from a response-spectrum analysis using a linear model with appropriate values of effective stiffness, damping
and strength. It is shown that seismic drift for moderate-rise structures calculated using an effective stiffness
based on half of the initial stiffness and the displacement response spectrum determined for a linear model
having a damping factor of 0.02, would provide a safe bound to nonlinear drift. For short-period structures,
strength plays a major role and the linear model estimates may be a fraction of the result from nonlinear
analysis. A method for estimating seismic drift is proposed based on the use of idealized linear response
spectrum modified by a factor that accounts for nonlinear action. The method is evaluated using results from
nonlinear dynamic analysis for various hysteresis models. Additionally, comparisons are made with seismic
drift observed in earthquake simulation tests. Results of the evaluation indicate that the proposed method
represents a safe bound to nonlinear drift of RC structures.
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GENERALIZED DISPLACEMENT SPECTRUM

Previous studies have shown that nonlinear displacement response can be approximated using linear estimates
(Shibata and Sozen 1976; Shimazaki and Sozen 1984). The generalized displacement spectrum presented
here is intended for drift estimates for reinforced concrete structures responding nonlinearly.

A linear displacement response spectrum can be defined based on a typical smoothed linear acceleration
spectrum considering that the spectral values for displacements, velocities and accelerations, for damping
less than 20% of critical damping, are related approximately by:
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where,
Sa, Sv, Sd = spectral acceleration, velocity and displacement, respectively;
() = circular frequency of vibration;

T = period of vibration of a single-degree-of-freedom system.



Linear acceleration spectra can be determined readily after estimating the maximum expected ground acceleration
and using appropriatz amplification factors. In this study, a system with 2% damping ratio is selected as the frame
of reference for computing the linear response. Several studies have recommended values for spectrum
amplification factors for linear response as a function of the damping ratio (Newmark et al. 1973; Riddell and
Newmark 1979). For systems with a 2% damping factor, the acceleration amplification factor recommended
in these studies vary from 3.1 to 4.3. The amplification factors have been found to be site dependent (Seed
etal. 1974).

An idealized linear acceleration response spectrum can be defined using the following expression:
Fa g for T< Tg
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where,
Fq = acceleration amplification factor. A value of 3.75, for oscillators with 2% damping
ratio, is representative of a wide range of earthquakes;
acceleration of gravity;
peak ground acceleration expressed as a coefficient of the acceleration of gravity;
characteristic period for ground motion. Period at which the assumed constant
acceleration region ends.
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The above definition is based on the assumption that for periods below T, the acceleration response is nearly
constant and for periods above, the velocity response is nearly insensitive to change in period.

Using the relationships given by Eq. (1) and (2) and substituting into Eq. (3), gives an expression for an idealized
linear displacement response spectrum:
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This expression can be rewritten as:
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where,
Dy = characteristic displacement for ground motion;
i = effective period of the oscillator.

The characteristic displacement for ground motion, in this study, represents the linear displacement of an
oscillator with period T and a damping factor of 2%, it can be defined in terms of the peak ground acceleration
using:
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The effective period, Teg, for reinforced concrete structures, may be assumed to be approximately V2 times

the period that corresponds to uncracked member section properties. It represents an intermediate value
between the periods corresponding to uncracked and fully cracked section.

T 2
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The idealized response spectra defined by Eq. (3) and (5) are compared to the actual response spectra for
linear systems subjected to El Centro 1940 NS (Imperial Valley Earthquake). The results shown in Fig. 1
indicate an adequate smooth representation of the response spectra with results generally on the higher side.



The characteristic period for ground motion, Ty, is determined using the input energy spectrum. The
maximum input energy, expressed as equivalent velocity, is given by:
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where,
Veq = equivalent velocity;
E; = input energy;
m = mass of the oscillator;
Xg = ground acceleration;
x = velocity of the oscillator relative to the ground;
tf = time duration used to calculate the response.

The input energy, Ej, equals the maximum of the sum, over time #, of kinetic energy, dissipated energy and
strain energy. Ty is defined as the lowest period where the input energy spectrum, for a damping factor of
10%, tends to level off. This definition of T, based on the energy response spectrum, coincides closely with
the period at which the nearly constant acceleration range ends. The rationale for using the energy spectrum
for defining Ty is that nonlinear displacement response lengthens the period of the oscillator and if this results
in an increase of input energy, the nonlinear system has to displace further in order to dissipate the increase
in input energy. This interpretation suggests that linear and nonlinear systems with initial periods more than
Ty, where input cnergy remains nearly
constant, are likely to experience nearly equal — —
maximum displacements. For practical 25001 ElCentro1940NS 2% Damping |

— T —T

applications, Ty can be taken equal to 0.6 sec. 2000 ——— 10% Damping ]
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Values for 4042 are dependent, among other
factors, on the focal distance of the earthquake.
A value of 6 has been recommended to
accommodate a wide range of earthquakes,
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Fig. 1. Linear Response Spectra for El Centro 1940 NS
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where,
Ag = nonlinear displacement spectrum ordinate normalized by the characteristic
displacement for ground motion, Dy, given by Eq. (6);
DR = displacement ratio, normalizes the maximum nonlinear displacement in relation to
the smoothed spectral displacement, Sg, for a linear system with 2% damping ratio;
TR = period ratio, normalizes the effective period of the system, Ty, in relation to the

characteristic period for ground motion, 7.

Equation (9) implies that for systems having period ratios more than one, linear and nonlinear displacements
are nearly the same, so the displacement ratio, DR, is taken as equal to unity. For systems in the short-period
range (TR < 1), values of DR are more than one. These trends have been discussed previously (Shimazaki
and Sozen 1984).

The expression for the nonlinear displacement, Eq. (9), is not intended for prediction of maximum
displacements. It is a bound. The following expression is proposed as a bound to the displacement ratio,
DR:
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where,
SR = strength ratio, normalizes the strength of the system in relation to the maximum force

that the system would develop if it remained linear (at a damping factor of 2%). A value
of SR equal to or greater than unity corresponds to systems responding linearly.

In Eq. (9), the displacement ratio, DR, represents a modification factor for the linear displacements to account
for nonlinear resporse. Figure 2 contains a plot of Eq. (9), using Eq. (10) to define DR. For low values of
SR, DR approaches 1o ¥7r and Eq. (9) results in A 5 = TR, a straight line through the origin.

The strength ratio may be defined as the inverse
of a strength reduction factor R. It is reasonable )
to adopt a policy for determining the tolerable

level of R, the ratio of linear response at a .
damping factor of 2% to available strength. Itis - o SR=1/16
well established that for structures with effective T SR=1/8
periods exceeding the characteristic period of the I ——— SR=12
ground motion, DK is insensitive to strength. —— SR=
Ideally, for TR > 1, R may be as large as desired. I
If TR approaches zero, R has to approach unity.
For a rigid structure there is no amplification or
deamplification of the ground acceleration. It is
reasonable to set the value of R at 1 for TR=0
(hypothetical value).

As = Dmax / Dy

It has been shown that the value of R increases as I 4

TR goes from O to 1 (Miranda and Bertero, 1994). i i

Conceding that R must vary between TR =0 and N Dg = Fa-0-g-(Tg/2m)2
TR =1, the simplest policy is to make the s

variation linear. The value for R beyond TR = 1 s — ' —
must be set at a level that produces tolerable

values at TR approaching 1. Pilot studies showed TR = Tetf / Tg

that Eq. (10) would be satisfactory for values of

R:notexceeding 16. The strength ratio expressed Fig. 2. Generalized Displacement Spectra

as a function of a tolerable strength-reduction

factor is given by Eq. (11):




1 < 1

< fi TR<1
(Ri—1)-TR+1 ~— Fq or
SR = (1)
1
—_ >
R for TR2=21
where,
R; = tolerable strength-reduction factor.

The acceleration response of systems with very low period is nearly equal to the ground acceleration, and
therefore the strength ratio need not exceed VF,,.

The strength ratio is related to the base shear strength coefficient, Cy, by the following expression:
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For values of Fz = 3.75 and R; = 16, substituted in Eq. (3) and (11) and then into Eq. (12), a system with
period Ty would require a minimum Cy of nearly 12% for a 0.5g earthquake.

(12)

Evaluation of the goodness of the generalized displacement spectrum, defined by Eq. (9) combined with Eq.
(10), is performed by analytical and experimental tests. These are presented next.

ANALYTICAL TEST OF DRIFT ESTIMATES

Description of Analyses

In this section, the applicability of the generalized spectrum is evaluated using calculated data. The analytical
test consists of the comparison between the maximum nonlinear displacement computed for a series of
single-degree-of-freedom systems and the estimated displacement given by Eq. (9). Computed maximum
response is obtained using the Newmark Beta Method with beta set to 6 (Newmark 1959), a numerical
time-step procedure to evaluate dynamic response.

Results will be presented in the form of displacement response spectra for the earthquakes listed in Table 1.

Properties of Oscillators Analyzed

The force-displacement relations that characterize the single-degree-of-freedom systems considered in this
study, are based on two hysteresis models: the bilinear and the reducing-stiffness (loading and unloading
stiffness reduce with increase in displacement beyond yield) models. Both models are described in detail by
Otani (1981).

The reducing-stiffness model used in this study is based on a bilinear primary curve. For maximum response
amplitude much larger than the yield displacement, this model can produce displacement waveforms very
similar to that of more elaborate models (Otani 1981).

To represent a broad range of structures, each model was considered with post-yield stiffness Ky, of 0% and
10% of the initial stiffness Ky. For each earthquake, an idealized linear displacement spectrum was
determined following Eq. (5), where Dg was obtained using Eq. (6) with F; =3.75, =0.5 and T, from Table
1. The effective period, Teg, for each oscillator was based on the initial stiffness, K y, of the assumed bilinear
force-displacement primary curve.

The expression for the displacement ratio, DR, given by Eq. (10) was evaluated. The strength ratio, SR, for
cach oscillator, was computed from Eq. (11), with Ry values of 16, 8 and 4. The SR values selected, correspond
to base shear strength coefficient Cy, of nearly 12, 25 and 50 percent for systems with period Ty responding
to earthquakes with peak acceleration of 0.5g.

Viscous damping included was small, as is generally accepted for undamaged structures. A damping factor
equal to 2% of the critical was based on the initial stiffness Ky. Damping was assumed to remain unchanged
during the entire analysis.



Table 1.  Ground Motions Considered
Earthquake Station Component Peak Ground Record Duration Characteristic
Acceleration I Period
® Ty
San Fernando Castaic N21E 0.32 30 0.35
02-09-1971 Old Ridge Route, California
Imperial Valley El Centro NS 0.35 45 0.55
05-18-1940 Irrigation District, California
Kern County Santa Barbara S48E 0.13 60 1.03
07-21-1952 Courthouse, California
Tokachi-Oki Hachinohe EW 0.19 36 1.14
05-16-1968 Harbor, Japan

Sources: California records: Earthquake Engineering Research Laboratory, California Institute of Technology.
Japan record: Association for Science Documents Information, Tokyo, Japan.

Computed and Estimated Drift

Linear and nonlinear displacement response spectra were computed for each earthquake record listed in Table
1. Results are presented in Fig. 3, where the estimated bound is given by Eq. (9) and (10), and the strength
ratio is based on Eq. (11) for R; values of 16.

All figures are plotted in nondimensional form with period ratio in the horizontal axis. The vertical axis
represents the maximum displacement response normalized in relation to Dy, the idealized linear displacement
for a system with period T and a damping factor of 2%.

For all earthquakes considered, in the period range where 7R 2 1, the estimated bound represented a
reasonable upper bound for the nonlinear response. In the short-period range (7R < 1), the average response
of the models considered was kept below the estimated bound. Systems with zero post-yield stiffness
(Ku = 0) tended to experience the largest displacements and occasionally exceeded the estimated bound.
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Fig. 3. Normalized Displacement Response Spectra for Selected Earthquakes



The estimated bound used was based on a smoothed linear displacement spectrum with an acceleration
amplification factor of Fz; =3.75 with respect to the ground motion, a value typical of systems responding
linearly with a damping ratio of 0.02. Had a larger factor been used, then all response maxima would have
kept well within the estimated bound. On the other hand, use of a lower value, say F =2.7, which is typical
for a damping factor of 0.05, would have resulted in lower displacement estimates and lower shear strength.
Consequently, nonlinear displacement maxima would have exceeded the estimated bound in a wider range
of periods. It is important to emphasize that, in this study, the use of Eq. (9) and (10) are based arbitrarily on
the 2-percent-damping response spectra. There are no implications in the choice about the physical state of
the structure. Response spectra at another damping factor could have been used with appropriate but different
statements about DR and/or Ty

EXPERIMENTAL TEST OF DRIFT ESTIMATES

Description of Experimental Data

Experimental testing of the calculated drifts was focused on short-period single-degree-of-freedom systems.
A total of 22 small-scale reinforced concrete structures tested using the University of Illinois Earthquake
Simulator are cited in the present study. The maximum displacement measured for each specimen is
compared with the estimated bound provided by the proposed generalized response spectrum, Eq. (9) and
(10). Results of the tests have been studied and reported in detail in a series of publications (Gulkan 1971;
Morrison 1981; Bonacci 1989).

In general, testruns of a given specimen included repetitions of free-vibration test to determine low-amplitude
natural frequencies followed by earthquake simulation. The sequence was repeated with the intensity of
earthquake simulation being increased in successive runs. For each specimen, test runs with the maximum
base accelerations are considered in this study.

Measured and Estimated Drift

Drift estimate based on Eq. (9) is driven by three parameters: period ratio, TR; characteristic displacement,
Dyg; and strength ratio, SR. Evaluation of these parameters conformed to the definitions given below.

The structure effective period, Tef, and the earthquake characteristic period, Ty, define the period ratio. The
effective period was obtained as V2 times the initial period of the system, which was taken as the value
measured in the low-amplitude free vibration test that preceded the first run. Lacking an energy response
spectrum, the characteristic period for ground motion was obtained from the acceleration spectrum, for a 10%
damping factor, due to recorded base

acceleration. It was taken as the period where the 100 —— - T — —
last significant peak was attained. e
| O Bonacci /
The characteristic displacement for ground | A Gulkan /
motion, Dg, was obtained from the linear response 75 L
spectrum for a damping factor of 10%, scaled up
by a factor of 2. The result is equivalent to a
smoothed spectrum for 2% damping ratio.

O

Morrison s 1

The strength ratio was calculated from the
relationship givenin Eq. (12), where Vy was based
on the calculated yield strength, and the linear
response acceleration, S;, was obtained from the
idealized linear displacement, Sq, using Eq. (1) 25+ 7
and (5). i A
e o Mean = 0.72
Comparison of measured maximum £ Std. Dev. = 0.22
displacements with estimated values, is shown in A l .

Fig. 4. The mean for the ratio of measured to R T
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maximum ratio of measured to estimated resulted . . .
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SUMMARY

The maximum nonlinear displacement of reinforced concrete structures subjected to strong ground motion
may be estimated from a response-spectrum analysis using a linear model with appropriate values of effective
stiffness, damping and strength. Seismic drift for moderate-rise structures (7R > 1) calculated using an
effective stiffness based on half the initial stiffness and a displacement response determined for a linear model
with a damping facior of 2%, would provide a safe bound to nonlinear drift.

For short-period structures (7R < 1), strength plays a major role and the linear model estimates may be a
fraction of the result from nonlinear analysis. This is compensated by introducing a modification factor to
the linear estimate. For structures complying with a minimum strength ratio based on Eq. (11), the
modification factor may be obtained from Eq. (10). The factor is made dependent on the structure initial
stiffness and strength and on the type of ground motion characterized by intensity and frequency content.

The proposed method was evaluated using results from nonlinear dynamic analysis performed on systems
with different hysteretic properties. The evaluation was complemented by experimental data collected from
22 small-scale reinforced concrete structures tested on the University of Ilinois Earthquake Simulator.
Results of the analytical and experimental evaluation indicate that the proposed generalized displacement
spectrum provides a safe bound to nonlinear drift estimates for reinforced concrete structures subjected to
earthquake motions.
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