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ABSTRACT

This paper summarizes a set of constitutive laws for concrete and steel bars, established in conjunction with
the development of the softened truss model. It consists of three average stress-strain relationships: concrete
in tension, reinforcing bars stiffened by concrete, and softened concrete in compression. Observations
regarding these three relationships are: 1) concrete in tension develops substantial tensile stresses even after
extensive cracking; 2) stress-strain curve of mild steel embedded in concrete does not exhibit a yield plateau
after yielding, as in the case of bare bars, but has an “apparent yield stress” lower than the yield stress of
a bare bar; and 3) the softening of concrete in compression is expressed by a softening coefficient which
is a function of the tensile strains (smeared cracking) in the perpendicular direction. This softening
coefficient is also found to be inversely proportional to fc' , for f; up to 100 MPa. The proposed set of
“accurate constitutive laws” is compared to two sets of constitutive laws currently in use: (1) the
conventional set of “simplified constitutive laws” in which the tensile stress of concrete is neglected and the
stress-strain curve of steel bars is assumed to exhibit the elastic-perfectly-plastic behavior; and (2) the
“modified constitutive laws” in which the tensile stress of concrete is taken into account but the stress-strain
curve of steel bars remains elastic-perfectly-plastic.
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INTRODUCTION

Wall-type and shell-type reinforced concrete structures have received considerable attention in recent years.
An element isolated from such a structure is subjected to membrane stresses. Since the understanding of
the behavior of a reinforced concrete element is the key to the analysis of the whole structure, a softened
truss model theory has been developed for the nonlinear analysis of such membrane elements (Hsu, 1993).
The softened truss model incorporates the three fundamental principles of the mechanics of materials: stress
equilibrium, strain compatibility and constitutive laws of materials. An accurate prediction by the softened
truss model depends strongly on the constitutive laws of the concrete and steel in the elements.

Using the universal panel tester constructed at the University of Houston (Hsu er al., 1995), fifty-five full-
size reinforced concrete panels, 1.4 m square and 17.8 cm thick, have been tested to determine the stress-



strain relationships of concrete and steel in the membrane elements. Thirty panels were subjected to biaxial
tension-comupression in which the reinforcement is oriented in the same direction as the principal stresses,
and the loads were applied sequentially (with tension first) or proportionally. The remaining twenty-five
panels were subjected to in-plane shear in which the reinforcement is oriented at a 45 * angle with respect
to the principal stress directions. Of the fifty-five panels, thirty-five were made with normal-strength
concrete, f,= 42 MPa, six were made with medium-strength concrete, f;= 65 MPa, and fourteen were
made with high-strength concrete, f;= 100 MPa.

SOFTENED TRUSS MODEL FOR MEMBRANE ELEMENTS

A reinforced concrete membrane element is subjected to in-plane shear stresses and normal stresses as shown
in Fig. 1(a). The stresses o,, 0, and 7,, are defined in the €-t coordinate of the longitudinal and transverse
steel bars. This set of in-plane stresses o,, o, and 7, is equivalent to a set of principal stresses, o, and
a,, acting along the principal 2-1 coordinate system, Fig. 1(d). The angle between the 2-1 coordinate and
the ¢-t coordinate is called the fixed-angle a, because this angle remains unchanged when the applied
stresses 0,, 0, and 7, increase proportionally.

The first set of cracks occurs when the principal tensile stress o, reaches the tensile strength of concrete.
These diagonal cracks will separate the concrete into a series of concrete struts. In general, when an
element is reinforced with different amounts of steel in the €- and t-directions, the direction of the principal
stresses in concrete after cracking will continuously deviates from the direction of the applied principal
stresses, as the applied load increases proportionally. The post-cracking principal stresses in the concrete
are defined by the d-r coordinate in Fig. 1(e). The angle a between the d-axis and the {-axis continues to
rotate away from the initial angle «, throughout the loading history. As such, the angle o is called the
rotating-angle. The average principal compressive stress and the average principal tensile stress in the
concrete are designated o, and o,, respectively.
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Fig. 1. Stress conditions in a reinforced concrete membrane element

Equilibrium Equations

The two-dimensional equilibrium condition relates the average internal stresses in the concrete (o4 and o,)
and in the reinforcement (f, and f) to the applied stresses (o,, ¢, and 7,). Utilizing the transformation of



concrete stresses and assuming that the steel bars can resist only axial stresses, the superposition of concrete
stresses and steel stresses results in (Hsu, 1993):
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in which p, and p, are the percentages of reinforcement in the €-and t-directions, respectively.

Compatibility Equations

The two-dimensional compatibility condition expresses the state of strains within the element. Assuming
that the d- and r- are also principal axes for strains, then the transformation of average strains between the
£-t coordinate system (€,, €, Y,) and the d-r principal axes (€, €, ) gives:
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Constitutive Laws

Based on the principles of mechanics, the stresses in the equilibrium equations need to be related to the
strains in the compatibility equations through the constitutive laws of materials. The analysis/design of the
membrane element of Fig. 1(a) requires four stress-strain relationships, i.e., concrete in compression,
concrete in tension, and mild steel in longitudinal and transverse directions as follows:
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Because the equilibrium and compatibility equations are derived for a continuous material, the stress-strain
relationships of concrete and reinforcement must relate average stresses to average strains. The derivation
of functions f, through f, in Egs. (7) through (10) was the focus of an extensive study carried out at the
University of Houston (Belarbi and Hsu, 1994, 1995; Pang and Hsu, 1995; Zhang, 1992, 1995). Fifty-five
full-size reinforced concrete panels were tested in a universal panel tester and subjected to various types of
membrane stresses, including biaxial tension-compression and pure shear loadings. The overall objectives
of the research were threefold: 1) to experimentally study the variables that may affect the constitutive laws
of cracked concrete; 2) to develop a physical understanding of the observed phenomenon so that the
influence of each variable can be quantified; and 3) to improve the mathematical expression for the
constitutive laws required in the softened truss model. Based on this research, the following constitutive
laws were derived.



CONSTITUTIVE LAWS OF MATERIALS

Concrete in Compression

The primary characteristic of the constitutive law of concrete in compression is the softening of peak stress
in comparison to the companion cylinder. The variables that may affect the softening phenomenon were
studied in a systematic manner. These variables include the tensile strain, the tensile stress, the load path
and the nature of applied loads (biaxial tension-compression vs. pure shear), the percentage of steel, the
spacing of steel bars, the ratio of longitudinal to transverse reinforcements, and the concrete strength.
Among the variables investigated, the severity of cracking expressed in terms of ¢,, the concrete strength
and to a certain extent the load path were found to be the main variable. The softening coefficient was also
found to be inversely proporuonal to f The graphic representation of the stress-strain relationship of the
softened concrete struts is shown in Fig. 2. The function f, of Eq. (7) is mathematically expressed as

follows:
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where ¢, is the strain at the peak stress of standard concrete cylinder taken usually as 0.002 for normal
strength concrete (42 MPa) and 0.0024 for high-strength concrete (100 MPa), and { is the softened
coefficient taken as follows (Zhang, 1995):
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Concrete in Tension

Based on the tests of seventeen full-size reinforced concrete panels subjected to uniaxial tension (with
longitudinal reinforcement placed along the applied stresses), average stress-strain relationship for concrete
in tension was derived. Prior to the yielding of reinforcement, the average stress in steel can be estimated
by multiplying the measured average strain by the elastic modulus of steel. The difference between the
average steel stress and the applied stress is attributed to concrete and is considered as the average stress
in concrete. Based on this average stress approach, concrete was found to develop substantial tensile
stresses even after extensive cracking, and the function f, of Eq. (8) is expressed mathematically as follows
(Belarbi and Hsu, 1994):

o =Ege €.<€_ (13a)
0.4
€
o =f, [—“] €>€, (13b)
€
T
where E, is the elastic modul rete glven asE, = 3900‘/f (MPa); £, is the tensile strength of the

concrete glven as f, = 0.31yf (MPa) and €_ is the average tensile strain at which the concrete begins
cracking, given as 0.00008. Equation (13) is expressed graphically in Fig 3.
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Reinforcing Bars in Tension

The stress-strain relationship of mild steel bar tested in a bare condition exhibits a long plateau after
yielding. However, the average stress-strain curve of steel bars embedded in concrete does not show such
a yield plateau. The average stress at first yield called “apparent yield stress f}” and the average stresses
in the post-yield range were found to be lower than those of a bare bar. This reduction of steel stress was
found (Belarbi and Hsu, 1994) to be directly related to a parameter B = (1/p)(fc,/fy)"5 expressed in terms
of steel and concrete tensile strengths (f, and f,;) as well as the reinforcement ratio (p).

Furthermore, in the pure shear case where the reinforcing bars are laid out at a 45° angle with respect to
the principal applied stresses, there will be kinking of steel bars at the cracks. This kinking phenomenon
was found to lower even further the average stress of reinforcement (Pang and Hsu, 1995). The kinking
factor is related to the angle «,, Fig. 1(d). In the case of biaxial tension-compression tests (a; = 90°), the
reinforcing bars do not experience any kinking, whereas in the case of pure shear tests (a; = 45°, the
reinforcing bars undergo significant kinking.

The average stress-strain relationship of reinforcing bars embedded in concrete is shown graphically in Fig.
4 as a bilinear model. This relationship is valid for both the longitudinal and transverse reinforcements
indicated by functions f; and f, in Eqgs. (9) and (10) and is expressed mathematically as follows:

f. = Eg €,<€, (14a)
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In Eq. (14b), the factor [(0.91 - 2B) + (0.02 + 0.25B)(¢/¢,)] takes care of the averaging of steel stresses
in the post-yield branch. The factor [1 - (2 - ,/45°)/1000p] takes into account the kinking of reinforcing
bars at the cracks. When o, = 45°, this “kinking factor” is equal to [1 - 1/1000p]. When a, = 90°, it
becomes unity.
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Fig. 4. Average stress-strain curve of mild steel bars using bilinear model

Simplified and Modified Versions of the Constitutive Laws

The set of constitutive laws relating average stresses to average strains, Eqs. (11) through (15), are referred
to as the accurate constitutive laws. They can be used in the analysis when the deformations and the yield
strength of the structure are both important.

If a structure is subjected to static loads and the deformation of the structure is not important, then the
constitutive laws can be simplified by (1) neglecting the tensile stress of concrete, giving

o =0 (16)

r

and (2) assuming the elastic-perfectly-plastic characteristic of bare mild steel bars, giving

f, = Eg, €s€, (17a)
f, =1, €> € (1'7b)

Equations (11), (12), (16) and (17) are referred to as “the simplified constitutive laws”. Since the use of
Eq. (16) is conservative in terms of the yield strength of an element and Eq. (17) is unconservative, the
errors induced by these two relationships cancel each other so that the yield strength is correctly predicted.
However, the deformations will be overestimated because the tension stiffening effect is neglected.
Physically, this simplification implies that the average tensile stress-strain relationships of concrete and steel
are replaced by the local stress-strain relationships at the cracks. Indeed, the tensile strength of concrete
is zero at the cracks, and the stress-strain relationship of mild steel bars at the cracks does exhibit the
elastic-perfectly-plastic characteristic of the bare bars.

A modified version of the constitutive laws is a simultaneous employment of the average tensile stress-strain
curve of concrete, Eq. (13), and the stress-strain curve of bare steel bars, Eq. (17). The modified
constitutive laws will take into account the tension stiffening effect so that the deformations are correctly
evaluated but it will overestimate the strength at the first yielding of steel. Physically, this overestimation
of yield strength is caused by the incorrect matching of the “local” stress-strain relationship of steel at the
cracks and the “average” tensile stress-strain relationship of concrete over a length that traverses several
cracks. As a result, this combination of two constitutive laws will produce an unwarranted “concrete
strengthening”, in addition to a correct reduction in deformations due to tension stiffening effect.



COMPARISON WITH EXPERIMENTS

The three sets of constitutive equations given above are used in the softened truss model, and the theoretical
predictions are compared to the experimental results of six full-size reinforced concrete panels tested at the
University of Houston. The six panels include three panels in F-series (Belarbi and Hsu, 1995) and three
panels in A-series (Pang and Hsu, 1995). In the panels of F-series, the longitudinal reinforcement was
placed perpendicular to the direction of the compressive loads (o, = 90°). The number following the letter
"F" gives the ratio of the compressive stress to the tensile stress. In the panels of A-series, the longitudinal
reinforcement was oriented at an angle of 45° to the principal compressive loads (c«; = 45°). Compressive
and tensile loadings were applied proportionally with equal magnitude until failure. The predicted responses
of the softened truss model using the three sets of constitutive laws (simplified, modified and accurate) are
compared with the experimental responses of the six panels in Fig. 5 (Hsu and Zhang, 1996).

When the set of simplified constitutive equations is employed, Fig. 5 shows that good agreement is obtained
in terms of yield strength. However, the post-cracking deformations are overestimated due to the neglect
of the tension stiffening effect. This overestimation of deformations is especially severe before the cracking
of concrete, and is about 20% in the post-cracking service load stage. When the set of modified constitutive
laws is utilized, Fig. 5 shows that correct predictions are obtained for load-deformation curves up to
yielding. The predictions, however, significantly overestimate the shear stresses at the first yielding of steel
by an average of 13%. Figure 5 also shows that excellent agreement is obtained throughout the loading
history using the set of accurate constitutive equations. The agreement occurs not only in terms of yield
strengths but also in terms of deformations.
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Fig. 5. Shear stress vs. shear strain relationships for panels in A- and F-series (1 ksi = 6.895 MPa)



CONCLUSIONS

(1) Softened truss model was developed for the nonlinear analysis of concrete membrane elements. This
model involves three equilibrium equations, three compatibility equations and four equations for constitutive
laws of concrete and steel. Based on the test results of fifty-five full-size reinforced concrete panels,
average stress-strain relationships have been determined for concrete in compression, concrete in tension,
and steel reinforcement embedded in concrete.

(2) The stress-strain relationship of concrete in compression can be expressed by Egs. (11) and (12). The
peak-softening coefficient is primarily a function of the principal tensile strain, ¢, and the concrete strength
f.. In tension, the concrete carries tensile stresses even after yielding of steel. The stress-strain curve for
concrete in tension is expressed by Eq. (13). For reinforcing steel, the first yield stress of the average
stress-strain curve is lower than that of a bare bar. Kinking of inclined bars at crack further reduces the
average stress. The average stress-strain relationship of steel bars embedded in concrete is given by a
bilinear model expressed by Eqgs. (14) and (15). Incorporating this set of accurate constitutive laws into the
softened truss model will produce an accurate prediction of load-deformation response throughout the
loading history.

(3) In a modified version of the constitutive laws, the average tensile stress-strain curve of concrete is used
in conjunction with the elastic-perfectly-plastic stress-strain relationship of bare mild steel bars. This
combination of constitutive laws will take care of the tension stiffening effect on deformations, but will also
result in a significant overestimation of the yield strength. If the concrete in tension is neglected, however,
as in the simplified version of constitutive laws, the deformation at service load will be significantly
overestimated.
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