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ABSTRACT

Earthquake-resistant provisions are essential features of the design of cable-stayed bridges built on seismic
regions and must therefore be accounted for in any structural optimization approach. The response to seismic
loads depends on geometric and mechanic structural characteristics and, once these change continuously
throughout the optimization process, adequate sensitivity analysis algorithms must be used. Time-history and
modal/spectral approaches were both considered for such purpose, their relative merits and limitations being
discussed. The optimization is formulated as a multiple goals problem seeking to improve objectives such as
cost, stresses and displacements. An integrated analysis-optimization finite element program including these
features was developed from MODULEF (INRIA, 1992) open code. An illustrative example is used to
highlight the main issues of both methods and for a comparative study.
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INTRODUCTION

The use of an analytical analysis method for seismic design requires that some simplified model is used which
can provide suitable appraisal of the support excitation induced by the ground vibration waves.

The most widely used approaches for seismic structural analysis are the modal superposition method combined
with response spectra analysis and the time-history (step-by-step) method.

In the former, one obtains a set of pseudo-static forces which represent an envelope of the instantaneous
critical state of the structure throughout the whole seismic excitation. This is obtained by combining the
maximum modal forces assigned to the modes with lower eigenfrequencies. For many years the Square Root of
Sum of Squares method (SRSS) was used for this purpose. However, this method is inadequate when the
structures possess closely spaced frequencies and in three-dimensional structures with strong mode coupling,
as is the case with cable-stayed bridges. This fact led to the development of the Complete Quadratic
Combination (CQC) method, originally formulated by Kiureghian (1981) and followed in this study. The
method uses the concept of correlation coefficients, becoming the SRSS solution when all the frequencies are
well separated. The inertial forces induced by support excitation are computed by using spectral accelerations,



displacements or velocities for each representative mode, displacements or velocities, available from a standard
response spectra.

In the time-history approach, the integration of the dynamic equilibrium equations either by a direct or a modal
procedure is done. A complete set of instantaneous solutions for the successive time steps is evaluated, the
excitation being provided through an accelerogram. Although this data should have been recorded on site or in
a near region from an actual seismic event, this is seldom the case because there is not much available records
of seisms of adequate intensity. The alternative is the use of an artificial accelerogram generated from spectral
density power functions, and this approach was adopted here.

Although there is an extensive literature and a number of actual design applications concerning both methods,
very little attention has been paid, however, to its behaviour in the context of structural optimization.
Differently from other kinds of loads, seismic action is highly dependant on the stiffness and mass
characteristics of the structure, which permanently vary with the design variables values through the
optimization process, no explicit relation existing to describe this variation. In the structural optimization
context, all the load conditions that the final optimized structure will be required to resist must be available.
Therefore, specific algorithms for the sensitivity analysis of the structural responses with respect to changes in
the design variables need to be derived and computed.

PROGRAMMING IMPLEMENTATION

The relative advantages and inconvenients of both modal/spectral and time-history procedures in the context of
an ordinary seismic analysis are well known. Modal superposition is unsuitable for strongly non-linear
problems, while time-history approach may effectively be used assuming a non-linear equation solver is
available. However, short-to-medium span cable-stayed bridges show mild non-linear behaviour, resulting
essentially from the sag effect of the cables. The use of the equivalent Ernst modulus concept (Walther ef al.,
1985) may thus be used to model the stress-dependant stiffness of the cables, allowing for a linear methodology
to be used elsewhere.

Once the pseudo-static forces set is obtained from the modal/spectral analysis, the remaining analysis and
optimization sequence is that of an ordinary static problem. This means that this step can be recursively called
as a black-box where the main program inputs data concerning structural description and from which it gets the
force set. After this, all the live memory may be cleaned up to be used by the main analysis core. This allows for
the method to be coded in a separate set of subroutines, called at the start of each analysis-optimization cycle,
resulting in a clear program structure.

Step-by-step methodology is also, in principle, relatively easy to implement. However, most finite element
packages in which this tool is available proceed either with static or dynamic solutions, but not both at the same
time. Considering that structural optimization requires information from (possibly) many load cases, of both
static or pseudo-static (dead and live load, wind, etc.) and dynamic (seismic action) nature, the possibility of
sequential solution of both types of load cases, prior to the optimization step, must be available. This could
obviously be made by hand, preparing a set of load cases at a time, but at the cost of considerable pre-
processing user effort, because it had to be repeated in every analysis-optimization cycle. For that reason, an
automatic procedure was implemented.

Both methods are considerably more expensive in computing time than the static case, but while most of

the computational effort for modal/spectral analysis corresponds to the solution of the eigenvalue problem, in
the case of time-history approach it results from the step-by-step procedure solution spanning the excitation
period.

Therefore modal/spectral approach seems to have advantages, because it is well known that the most
significant contributions for the pseudo-static forces set result from the modes with lower frequencies. This
allows for the eigenvalue search domain to be shortened. This advantage in ordinary seismic analysis may be
lost in structural optimization. Eigenvector derivatives, required for the sensitivity analysis, are computed from



a convenient expansion of eigenvectors but, for the purpose of accuracy, requires a considerable number of
terms to be employed. As a consequence, a relatively wide search domain must again be adopted for that case.

Time-history approach requires the solution of a large number of instantaneous results throughout the time
domain. In structural analysis this is done for both the real and the pseudo-load vectors, for each time-step. The
total number of right-hand sides equals the real number of load cases plus one times the number of design
variables. Even though the stiffness matrix factorisation is done once, time-history analysis is time-consuming,
specially when a signifficant number of design variables is being used.

Although the unconditionally stable algorithms, used for time-history solution, allow for the use of a large
time-step, accuracy requirements restrict that possibility. Furthermore, given the nature of the problem, the
time-step must be small enough to capture, from one side, the pattern of the exciting accelerogram and, on the
other hand, the effects of the most representative vibration modes of the structure. If one grossly assumes that
these modes are contained within the frequency range 0.1-3Hz (which is usually the case with cable-stayed
bridges), and that a minimum of five time-steps (Kiureghian, 1993) is required to a coarse modelling of the
behaviour within a single period, magnitudes of about 0.1s or less will result for the recommended time-step.

Besides, and since Rayleigh damping is usually considered, the method needs an eigenvalue solver. Moreover
an eigenvalue sensitivity analysis must be carried out, because the damping matrix depends on the two first
frequencies, which are structural dependent. This is a major disadvantage from the programming point of view,
because these tasks use most of the code developped in the modal/spectral approach.

MODAL/SPECTRAL METHOD

A brief description on the sensitivity analysis for the modal/spectral approach will be made next. The maximum
modal force for any mode under consideration is obtained from the expression
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where M stands for mass matrix, ¢, the ith eigenvector, ¢, and M; the participation factor and generalized mass
for the mode and S,; the spectral acceleration, depending on the damping ratio and the frequency of the mode.

Using CQC method, the forces so computed for the P considered modes are combined to obtain the resulting
force through the expression
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Correlation coefficients p, depend on damping ratios and frequencies ratio r=min(w;,w;)/max(c;,,):
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Sensitivity analysis of the seismic pseudo-loads is based on the differentiation of equation (2) with respect to
the design variable set. This requires, successively, the derivatives of modal forces and correlation parameters
and, for these, the eigenvalues and eigenvectors derivatives for the P modes. The pseudo-static force derivative
has the form
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and, for its computation, the ith modal maximum force derivative will be found to be
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TIME-HISTORY METHOD

Newmark's method was adopted for step-by-step integration of the dynamic equilibrium equations, in view of
its proven effectiveness and formal simplicity. Rayleigh damping is assumed and therefore a previous
eigenvalue solution is made to supply the two lower frequencies and their sensitivities. The access to this
module occurs whenever an updated structure is generated.

Sensitivity analysis algorithm is directly derived from the differentiation of the discrete instantaneous dynamic
equilibrium equations and the procedure evolves in time as the ordinary problem. It relies on chain computation
of a pseudo-load vector for next time-step, from which the acceleration and its gradient with respect to the
design variables can be obtained. The instantaneous relative displacements and velocities can then be evaluated
by using equations (8) and the gradient of the accelerations previously found.
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The effective stiffness matrix K, in (6) is a linear combination of the stifness and mass matrices. Dot means

time differentiation. The coefficients a, depend on the time-step and the Newmark constant parameters & and ».
o and @ are Rayleigh's parameters for damping matrix and are implicit functions of the design variables through
the basic frequencies w; and w,,.

The step-by-step sensitivity analysis main expressions are as follows
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and Rayleigh coefficients derivatives are
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APPLICATION EXAMPLE

Both methods are used for the optimization of the 250m symmetric cable-stayed bridge shown in Fig. 1. The
deck is 20m wide and is supported by two longitudinal asymmetric I-shaped beams. Symmetric I beams spaced



every Sm support the slab and the stiffening effect in the transverse direction is modelled by using diagonal bar
elements between consecutive beams. Rectangular hollow cross sections are adopted for the pylons. Vertical
connection between the deck and the pylons is the only considered. Live load all over the deck and seismic
vibration under dead load condition are used as load cases.For the modal/spectral approach, the Portuguese
code of practice RSA response spectras are used as excitation source. For time-history approach, artificial
accelerograms are derived from the standard spectral density power function available in that same code.
Earthquakes of both types I (moderate magnitude and a near focus) and II (intense magnitude and a far focus)
were studied, corresponding to time spans of 10s and 30s, respectively, for the step-by-step approach. Volume
unit cost was assumed to be the same for all kinds of structural elements. Allowable stresses of 200MPa and
500MPa were assigned to beam and cable elements, respectively.

28 design variables were considered, all respecting to cross sectional parameters. Variables 1,2 and 3 are upper
and lower flanges width and web height for the main girders, constant values being assumed throughout the
span for aesthetic reasons. Variables 4 through 12 are flanges and web thicknesses for respectivelly the outer
part of side spans, the neighbourood of the pylons and the inner part of central span. Variables 13 to 20
correspond to pylons cross-sectional dimensions and thicknesses for both the lenghts below and above the
deck. Finally, variables 21 through 28 are the cross-sectional areas of each couple of stays, starting from the
outer to the inner cables. Values for the starting and final (optimized) design are listed in Table 1 for both
modal/spectral and time-history approaches.
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Fig. 1. Cable-stayed bridge geomeiry
Table 1. Initial and optimized values of designed variables
var  start.  mod/sp. time-h. var  start. mod/sp. time-h. var  start.  mod/sp. time-h.
x1 1.000 0.741 0.843 x11 .0200 0367 0226 x21 .0060 0129 0087
X2 1.000 0.532 0.539 x12 .0200 0100 0100 x22 0060 0035 0036
x3 2.000 1.198 1.376 x13 3.000 4304 3.617 x23 .0050 0047 .0048
x4 0200 0164 0124 x14 3.000 4782 3.046 x24 .0050 .0061 0050
x5 .0200 0326 0209 x15 0250 0108 0108 x25 .0050 0041 0051
x6 0200 0100 0010 x16 0250 0127 0274 X26 .0050 0045 0054
x7 0300 0397 0322 x17 2.000 4177 4.141 x27 .0050 .0054 .0057
x8 0300 0129 0129 x18 2.000 2.266 2.055 x28 .0050 .0038 0035
x9 0300 0129 0129 x19 .0200 0100 0100 Vol 165.00 128.71 130.68
x10 .0200 0103 0100 x20 0200 0100 0100 % - 22.00 20.80

Move limits of 10% were allowed for design variables through an optimization cycle. Very similar optimal
designs were found from both methods, as can be seen by values in Table 1. A global cost reduction of about
21-22% was achieved.

Figure 2 shows the relative weight of each computational task within each method. Time-integration
procedures takes most of the time in the step-by-step approach. For modal/spectral approach, three modes with
the highest participation factors were considered in computing the pseudo-static loads. The eigenvalue problem
search domain was set in the range 0-300rad?¥s?, grossly corresponding to the frequency range 0-3Hz. About
20 modes, depending on the current solution, were detected within these bounds. No coalescence situations
were detected throughout the process.
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Fig. 2. Computation time of each task for modal/spectral and time-history

Figure 3 illustrates the absolute processing time spent until convergence (8 iterations). A cost decrease of 1%
was considered as stopping criterion. The higher cost of optimization stage in the time-history approach results
from the larger number of goals defining the multi-objective function.
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Fig. 3. Absolute computation time until convergence (8 iterations)

DISCUSSION

In the specific context of structural optimization, modal/spectral approach requires careful control to avoid
numeric overflow. The method of Rogers (1970) is used to compute eigenvectors sensitivities. The weak point
of that method arises when eigenvalue coincide, in which case the algorithm fails. This might happen during the
optimization process in two ways. First, the same value corresponds to two or more frequencies with
intrinsically different vibration modes, at some intermediate design. This situation is temporary because the
frequencies separate, when the design variable set evolves to the next solution. The other situation is related to
intrinsically equal frequencies, such as those corresponding to symmetric and anti-symmetric transversal modes
of unbraced pylons, in which case both frequencies will change identically throughout the process. This case
can be excluded from the very beginning of the optimization process by taking measures to prevent the
occurrence of those modes (such as adopting top bracing of pylons) or throwing them outside the considered
frequency range (by adequate geometry or cross-section parameter selection).

In a strict sense, coalescence will barely occur, because the computational idiosyncrasies will cause slight
numerical differences to occur between the formally equal eigenfrequencies. However, the numeric accuracy
will probably result affected in such situations and, therefore, a criterion based in some specified tolerance must
be used as a control procedure. Special procedures (Haftka ef al, 1992) for handling coalescent eigenvalues
were also implemented.



The large amount of results and, consequently the corresponding requirements of live and mass memory
necessary for handling and storage is probably the main handicap of time-history procedure. The amount of
data supplied by modal/spectral method to the main analysis-optimization program corresponds to that of a
static load case and the respective sensitivities for each considered seismic load case. Memory requirements are
therefore only slightly increased with respect to the static problem.

Time-history approach uses and generates that same volume of data and results for every time-step of the
solution process. This means that, unless some filtering method is adopted, the system will run out of memory
even for small- or mean-sized problems. Memory is not a critical issue in big computational systems, but in
personal computers or workstations, which this study is targeted to, downsizing becomes necessary and a
judicious control of memory is fundamental.

Filtering procedure consists of retaining results from just a selected number of time-steps, the intermediate
information being lost or stored in disk, for the case in which post-processing of time-dependant quantities is to
be done. The distribution of the time points has to be close enough to preclude the possibility of signifficant
peak responses between two points. On the other hand, it must be large enough to signifficantly reduce the
amount of data to deal with. An initial time mesh of one eighth of the first natural frequency is used being
reduced to one eighth of the third lowest frequency near the optimum solution

The total number of objectives concerning stresses and displacements for the static problem amounts typically
to a few hundred. This is a reasonable number to handle when constructing the envelope function replacing the
original multiobjective formulation. However, if a large number of time-steps needs to be considered afier
primary filtering, this number may raise to a few thousands, only a few of which are nearly critical. As a
consequence, the objective function may loose sensitivity with respect to those critical objectives. A second
filtering operation, when time-history method of dynamic analysis is employed, in which only a limited number
with the most critical objectives is used, is adopted as a standard procedure.

This procedure may obviously be used whatever the method considered for dynamic analysis. However, given
that the total number of objectives resulting from a modal/spectral approach is usually moderate, its use is not
as indispensable as with time-history method.

The linearization of the sensitivities within the move limits may introduce innacuracies in the time-history
approach. The rate of change of stresses and displacements depends on the current design point. Updated
prediction of these values is made by using a truncated Taylor's series in which terms concerning second
derivatives and higher are neglected. This has the effect of introducing discrepancies between predicted and
actual structural responses which depend on the smoothness of the first derivatives functions and the variation
of each design variable. For move limits of 10%, such errors are usually within the range 0-20%. As the
optimization sequence evolves, tighter limits must be chosen to reduce the error and avoiding unfeasible
solutions.

In modal/spectral analysis, in which all load cases are independent, the first order linearization used to compute
sensitivities has no effects on the effectiveness of the process and convergence is similar to that of an ordinary
static problem. However, in time-history approach each instantaneous solution in time is set by using data from
the previous one and so does sensitivity analysis. This may cause the error to propagate through the time
domain and predictions of one later time-step will probably lack accuracy, if the number of steps is large.

Either a tighter move limit must be chosen so as that the final accumulated error remains reasonably
bounded, or second derivatives must be used in the sensitivity analysis, to prevent this problem. The latter
results in a considerable increase in computing effort and data produced and was not adopted.

It is worth to make a remark concerning the reliability of optimized designs obtained by using specific
accelerograms. Both true and artificial accelerograms are data sets expressing a single occurrence of a random
process. Therefore, it is recommended that a design should be checked for three different accelerograms to
improve its effectiveness to withstand earthquakes. A standard response spectra as defined in the codes of
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practice can be used for the optimization with modal/spectral dynamic analysis, the seismic excitation remaining
unchanged for the same structural conditions.

CONCLUSION

Both modal/spectral and time-history approaches lead to suitable solutions of structural optimization of cable-
stayed bridges undergoing seismic vibrations. The former, however, is more effective from a computational
point of view, considering both the processing time and memory requirements. In spite of its higher
computational cost, time-history approach still must be used in problems with either strong geometric or
material non-linear behaviour such as long span cable-stayed bridges or prestressed and reinforced concrete
bridges, in which the assumptions of modal superposition approach are no longer valid.
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