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ABSTRACT

Induced variations in effective structural dynamic properties due to soil-structure interaction can lead to
higher or lower inertial forces depending on (1) the response spectra ordinates at the resonant periods of the
structure, (2) the damping levels and (3) the ductility factors. In spite of the fact that unsafe side errors can be
introduced in the process, design criteria usually do not take into account soil-structure interaction effects in
the structural ductility. So far, their implications on the response are not well known.

The main interest in this study is to identify the key parameters that control the variations on the non-linear

structural response due to iis interaction with the soil. Different soil-foundation-structure scenarios are
considered. Numerical results of ductility demands which were computed using an approximated formula and

a rigorous solution are presented.
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LINEAR SOIL-STRUCTURE SYSTEM

For multistory structures embedded in layered soil deposits, soil-structure systems can be idealized as shown
in figure 1. Structures responding as single degree of freedom oscillators in their fixed-base condition and
layered soil deposits essentially as single strata are required. The foundation is assumed to be axisymmetric
and rigid with two degrees of freedom, lateral translation and rocking. This coupled system is suitable to
consider interaction effects in the fundamental mode of vibration. The contribution of higher modes may be
determined by standard procedures disregarding these effects. In the figure T, and (, are the period and
damping of the fundamental mode, respectively, M, is the effective mass participating in the fundamental
mode and Hy, is the effective height of the resultant of the corresponding inertial forces. The foundation is
represented by means of their parameters the radius R, the mass M, the mass inertia moment J; and the
depth D. The real deposit is represented by means of the mean shear wave velocity B and the dominant
period of the site T, = 4H, /B, where Hy is the depth of the soil. The degrees of freedom of the system are



the strain of the structure x (that is, the structural displacement relative to the base of the foundation), the
horizontal displacement of the foundation relative to the surface of the ground x, and the rotation of the
foundation ¢.
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Fig 1 Soil-structure system for interaction effects in the fundamental mode

The dynamic equilibirum equation of this system is given by
MX +CX +KX =-X M/ (1)

where X = {xe 2 X 0c }T is the degrees of freedom vector while X and X are their first and second time

derivatives. Besides M, C, and K are the mass, damping and stiffness matrices, respectively. M, is the load
vector and X ,is the outcrup acceleration. The matricial components have the following forms.

M, M, M, (H, +D)
M, = M, M, +M, M,(H, +D)+M_D/2 2)
M (H, +D) Mg(H, +D)+M.D/2  Mg(H, +D)* +J,

. 0 0 K, 0 0 M,
Cs =] 0 Ch Chr . KS =/ 0 Kh Khr , Mg = Mg + M, (3,4,5)
0 Cy G 0 Kyq4 K; M (Hg +D)+MD/2

Let m be h, r or hr = rh in order to indicate any of the horizontal, rocking and coupled modes. Then, in these
expresions K, and C,, are the real and imaginary parts of the dynamic stiffnesses, also called dynamic
impedances, which are complex functions of the frequency. This functions relate the force (or moment) of
excitation with the displacement (or rotation) of the foundation in the steady state. K, represents the stiffness
and inertia of the soil as well as C;, accounts for the material (due to viscosity) and geometrical (due to wave
radition) dampings. These parameters are interpreted as the equivalent springs and dashpots of the soil-
foundation system and can be coveniently expressed as (Gazetas, 1983)

K () =K [k () —&eney (n)] (6)



oC g (@) = K5 [nem (n) +28km ()] (7)

where K?n is the static stiffness of th= m mode, k,, and ¢, are the corresponding stiffness and damping
coefficients, respectively, and n=oR /f, is the normalized frequency being o the circular frequency of the
excitation.

A parametric analysis of linear soil-structure systems allows to identify the key parameters that control most
of the interaction effects in the structural response. The relative stiffness between the structure and the soil,
defined by H,T;/ H,T,, controls the intensity of the interaction effects, which increase as the structure is
founded in softer soils. On the other hand, the geometry of the soil-foundation-structure linkage, defined in
terms of Hy/R the relative depth of the soil deposit, D/R the relative depth of foundation and H/R the
slenderness ratio of the structure, increase or decrease the levels of interaction too. Bigger effects are found
on higher structures with surficial foundations on shallow soil deposits. Under any soil-structure condition,
interaction effects increase the period and shift the critical damping of the structure with respect to those
corresponding to the fixed-base condition. The damping value increases or decreases dependig essentilly on
both, H, T,/ H,T, the stiffness soil-structure ratio and (¢ the damping factor of the soil. Structural transfer
functions resemble the typical transfer function of the simplest dynamic damped system: a fixed-base single
degree of freedom linear oscillator. It is suggested to use this system, which further on will be called
replacement oscillator, in order to approximate the response of the idealized soil-structure system. Figure 2
shows the idealized soil-structure system an the replacement oscillator. In particular, Avilés and Pérez-Rocha,

(1996) provide formulas to estimate the effective period (Te) and damping (&e) that define the replacement
oscillator.
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Fig 2 Soil-tructure system and the replacement oscillator subjected to the
same control motion

NON-LINEAR ANALYSIS

The inertial interaction effects on the period and damping can be treated by assuming a linear behavior of the
structure. In this case it is advisable to determine the soil-structure system response by means of typical
analysis in the frequency domain and Fourier theorems. However, it is well known that the structures should
be designed with suitable ductility to work adequately in the non-linear behavior range during intensive
earthquakes. In order to achieve non-linear analysis, a scheme of solution of the equilibrium equations in the
time domain is needed. It allows to account for non-linearity in an explicit way, however, in spite of
impedance functions of the soil are dependent of the frequency, the use of convolutions integrals is required.



In non-linear real analysis, dynamic stiffncss of the soil is usually approximated by means of invariant springs
and dashpots. The values of stiffness for frequency zero and damping when frequency tends to infinite should
be used. In this kind of approach, non-linear analysis of interaction systems is notably simplified since the
procedure of calculus is completely similar to the one of systems without interaction.

Impedance and compliance functions

From the equilibrium equation of the elementary oscillator the following relation can be written
K(w)X(w)=P(o) (8)

where X(w) and P(o) are the Fourier spectra of displacements and excitation forces, respectively, and K(w) is
the dynamic impedance of the oscillator which is expressed as

K(o)=k-0? +inc )

k and c are the spring and dashpot constants, respectively, and i =+/—1. Differing from the elementary
oscillator, springs and dashpots of the soil-foundation system are functions of the frequency. For this system,
the dynamic stiffness matrix becoimes

K(o):=K(o)+ioC(o) (10)

Tipically, it is not possible to make use of Fourier integrals to obtain the time representation of impedance
functions because the amplitude spectrum of each one grows monotonically with the frequency. Instead, the
inverse of dynamic stiffness matrix, that is, dynamic flexibilities or compliance functions, are quantities that
can be synthetized by using Fourier synthesis. As well as dynamic stiffnesses can be interpreted as the set of

forces that must be applied on the foundation to produce unitary displacements, dynamic flexibilities can be
interpreted as the set of displacements of the foundation due to the action of unitary forces. The dynamic

flexibility matrix in the frequency domain reads as

- . .1 [FR F
F(m)-K(co)1=[Fh Fﬂ (11)
hr r
with
th_Kr__T (12)
KyK, -K},
. @
KK, -KZ,
Fyy = Zth (14)
KpK? - KK,

Flexibility time functions are obtainced by the inverse Fourier transform of (12-14). These time functions must
be causal. They are requiered as convolution integrals in the scheme of solution of the dynamic equilibrium
- equations system.



Values of K‘I)n, kp, and cp, for axisymr.aetric foundations embedded in a single homogeneous stratum with

rigid base are obtained from a data base (Avilés and Pérez-Rocha, 1992). It was computed by performing an
efficient numerical technique (Tassoules and Kausel, 1983) that considers the effect of the rigid sidewall on
the dynamic stiffness of axisymmetric embedded footings. Discrete impedance functions were reported for a
wide range of normalized frequencies and for several soil-foundation conditions defined by vg the Poisson
ratio of the soil, Hg/R the relative depth of the soil deposit and D/R the relative depth of foundation. In this
formulation, hysteretlc damping is accounted for.

Hysteretic damping factor is widely used in frequency computation since its simplicity, due to the non-
dependency of frequency, makes it handy for many purposes. The assumtion of this kind of damping in
frequency formulations leads to results which are compared with those obtained by using more realistic
damping factors, such as the Voight and Kelvin damping models. In these models variations in the frequency
domain are admitted to obtain causal time functions.

We propose a frequency dependent term which allows to obtain approximated causal flexibility functions
from hysteretic impedance functions, that would be useful as convolution functions in a step-by-step
integration scheme. In the linear case iiis functions lead to comparable results to those obtained in frequency
domain. The form that we found for the dynamic stiffness of the m mode is

(1+14€n)

15
(L+itn) ()

Km(0) =K} [ky(n)+incy (mI(1+i26)

Integration scheme of the equilibrium equation of soil-structure systems

To take into account the variations of the impedance functions controlled by frequency, it is necessary to
solve the equilibrium equations in terms of flexibilities by means of convolution integrals (Wolf, 1988). The
solution scheme for the i+1 siep of integration is

MSXSM -I~PSi+1 = —Xgi+1 M, (16)
where Py is the vector of the forces that act on the springs and dashpots of the system, that is
P
P, = { © } (17)
i+1 Pc o
Here P, =c, X, + ke X  isthe force that acts only on the stiffness of the structure. The forces that

act on the foundatlon are

Pe Z | (18)

i+ wI ] j

where F c L and . . are integrals of the flexibility function given by

i+1-j

At
~o T
Fl= jEFC(At—r)dr (19)

CD
0

and

F —_[——P (i+2-j)At—= dt+j(1—E) c((i+1—j)At—1:)d'c (20)

Hl 1



Equations (19-20) can be evaluated by using linear variation of the matricial function F, within the interval

At. Regarding the relationship of velocity and displacement of the B—Newmark integration method for
constant acceleration it is possible to write

P, =P +P 1)
where
2
. Ce —A—t+ke A7 0 0 |[rg
P’ = L {..e } =R X 22)
i+l ét——ﬁ—l XC P41 i+l
0 4 G
and
At A .
( e—2'+ke T)Xei +(Ce +keAt)Xei '*'keXei
Py =1 . LoA? U > (23)
Fc—l Xo +Xo At+X T_ZFC. P
o 1 i i j=1 i+1-j J
With these results, dynamic equilibrium equation (16) is written as
[Ms + Rs]xsi+l = _XgmMo - Psi (24)

In particular, this formulation allows to account for non-linar variations of the matrix R,

INTERACTION EFFECTS ON THE STRUCTURAL DUCTILITY

The elastoplastic non-linear model was used to study the effect of soil-structure interaction on the structural
ductility. The behavior laws of this model in both, fixed- and flexible- base conditions are shown in figure 3.
The values of X, and X, correspond to the displacements at the limit of yielding of the structure without and

with interaction, respectively, while the values B Xy and ﬁu"cy are the maximum relative displacements
reached by the structure in those conditions. The parameters p1 and [l are the corresponding ductility factors.

Fig 3
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Rosenblueth and Reséndiz (1988) found the ductility demand of the equivalent replacement oscillator with
interaction should be

1 2
fi = (}—) (m=1)- 1 (25)
¢

where T, is the effective period of the system for a certain soil-structure condition. Since 0 < T, /T, <1
(25) yields 1< i <. It implies that the ductility factor is reduced due to the soil-structure interaction.

Using the time integration procedure described, we determined Xénax /Xy the ductility demands of soil-

strucutre systems with 5% of critical damping for the same range 0<T,H, /T, Hg <2 of relative stiffness
between the structure and the soil accounting for =2y 4. SCT (Secretaria de Comunicaciones y
Transportes) and CAO (Oficinas de Central de Abastos) sites at the lake bed zone of Mexico City valley were
selected. The excitations were given by the EW component of the accelerations of the great September 19,
1985, Michoacan earthquake recorded at this sites. The stratigraphic profiles were idealized by means of
single homogeneus strata. The properties for both, SCT and CAO sites are Hg =38m, By =76 m/s and
Hg =56 m, By = 64 m/s, respectively. According to the one-dimensional shear wave propagation model, the
dominant periods are Tg = 2s and 3.5s for SCT and CAQ sites, respectively.

D/R=0, H,/R=2 : D/R=0, H,/R=3 D/R=0, H,/R=5

1 1 L0

D/R=1, H,/R=3

1 1

0/R=1, H,/R=5

1.0 L A L L 1 L 1

1 1 1 3 1 1 1 1] 1

8 12 1.6 200 4 8 12 1.6  20.0 4 12 16 20
TSHe/TeHS TSHe/TeHS TSHe/TeHs

Fig 4 Ductility demands of soil-structure systems for Hy/R =5at SCT
(dashed lines) and CAO (dotted lines) sites. Continuous line
indicates the eftective ductility of the replacement oscillator.

Results for different soil-structure scenarios defined by the relative depth of the soil deposit H, /R =35, the
relative depth foundation D/R =0, 1/2 and1 and the slenderness ratio of the structure
H,/R=2,3 and 5 are displayed in figure 4. Continuous lines correspond to the ductility demands of the
replacement oscillator whose strength is the same that the one required by the coupled non-linear system to
reach the ductility value p in the fixed-base condition. They were computed with (25). For the flexible base



condition these values, that is, the duc'ility demands of the coupled systems for the SCT and CAO sites, are
represented by dashed and douted lines, respectively. Note that the ductility demand is independent of the site
effects. As it seems, the most of the ductility demand reduction are controled by the relative stiffness between
the structure and the soil.

CONCLUSIONS

A rigorous formulation was presented in order to compute the non-linear response of a soil-structure system.
This method uses flexibility functions as convolution integrals in a time domain solution. Results show that
the main effect in the structural behavior is a reduction in the ductility demand. The key parameter that
controls the major part of this reduction is the effective period. In particular, it depends mostly on the relative
stiffness between the structure and the soil. These results were compared with those obtained by using an
approximate algorithm, based on the replacement oscillator equivalence, which does not depend either on the
excitation or on the site effects. The agreement suggest that the approximation is useful for practical
purposes.
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